Active Filters

  • (-) PSI Laboratories = Catalysis and Sustainable Chemistry LSK
  • (-) Collection = info:fedora/psi:publications
  • (-) Publication Types = Journal Article
  • (-) Keywords = methane
Search Results 1 - 14 of 14
  • RSS Feed
Select Page
Catalytic conversion of methane to methanol using Cu-zeolites
Alayon, E. M. C., Nachtegaal, M., Ranocchiari, M., & van Bokhoven, J. A. (2012). Catalytic conversion of methane to methanol using Cu-zeolites. Chimia, 66(9), 668-674. https://doi.org/10.2533/chimia.2012.668
Comparative study of diverse copper zeolites for the conversion of methane into methanol
Park, M. B., Ahn, S. H., Mansouri, A., Ranocchiari, M., & van Bokhoven, J. A. (2017). Comparative study of diverse copper zeolites for the conversion of methane into methanol. ChemCatChem, 9(19), 3705-3713. https://doi.org/10.1002/cctc.201700768
Copper-exchanged omega (MAZ) zeolite: copper-concentration dependent active sites and its unprecedented methane to methanol conversion
Knorpp, A. J., Pinar, A. B., Newton, M. A., Sushkevich, V. L., & van Bokhoven, J. A. (2018). Copper-exchanged omega (MAZ) zeolite: copper-concentration dependent active sites and its unprecedented methane to methanol conversion. ChemCatChem, 10(24), 5593-5596. https://doi.org/10.1002/cctc.201801809
Isothermal cyclic conversion of methane into methanol over copper-exchanged zeolite at low temperature
Tomkins, P., Mansouri, A., Bozbag, S. E., Krumeich, F., Park, M. B., Alayon, E. M. C., … van Bokhoven, J. A. (2016). Isothermal cyclic conversion of methane into methanol over copper-exchanged zeolite at low temperature. Angewandte Chemie International Edition, 55(18), 5467-5471. https://doi.org/10.1002/anie.201511065
Methane transformation over copper-exchanged zeolites: from partial oxidation to C-C coupling and formation of hydrocarbons
Artsiusheuski, M. A., Verel, R., van Bokhoven, J. A., & Sushkevich, V. L. (2021). Methane transformation over copper-exchanged zeolites: from partial oxidation to C-C coupling and formation of hydrocarbons. ACS Catalysis, 11(20), 12543-12556. https://doi.org/10.1021/acscatal.1c02547
Methane-to-methanol: activity descriptors in copper-exchanged zeolites for the rational design of materials
Sushkevich, V. L., & van Bokhoven, J. A. (2019). Methane-to-methanol: activity descriptors in copper-exchanged zeolites for the rational design of materials. ACS Catalysis, 9(7), 6293-6304. https://doi.org/10.1021/acscatal.9b01534
Monomeric copper(II) sites supported on alumina selectively convert methane to methanol
Meyet, J., Searles, K., Newton, M. A., Wörle, M., van Bavel, A. P., Horton, A. D., … Copéret, C. (2019). Monomeric copper(II) sites supported on alumina selectively convert methane to methanol. Angewandte Chemie International Edition, 58(29), 9841-9845. https://doi.org/10.1002/anie.201903802
Non-oxidative methane coupling over silica versus silica‐supported iron(II) single sites
Šot, P., Newton, M. A., Baabe, D., Walter, M. D., van Bavel, A. P., Horton, A. D., … van Bokhoven, J. A. (2020). Non-oxidative methane coupling over silica versus silica‐supported iron(II) single sites. Chemistry: A European Journal, 26(36), 8012-8016. https://doi.org/10.1002/chem.202001139
Paired copper monomers in zeolite omega: the active site for methane‐to‐methanol conversion
Knorpp, A. J., Pinar, A. B., Baerlocher, C., McCusker, L. B., Casati, N., Newton, M. A., … van Bokhoven, J. A. (2021). Paired copper monomers in zeolite omega: the active site for methane‐to‐methanol conversion. Angewandte Chemie International Edition, 60(11), 5854-5858. https://doi.org/10.1002/anie.202014030
Pathways of methane transformation over copper‐exchanged mordenite as revealed by <em>in situ</em> NMR and IR spectroscopy
Sushkevich, V. L., Verel, R., & van Bokhoven, J. A. (2020). Pathways of methane transformation over copper‐exchanged mordenite as revealed by in situ NMR and IR spectroscopy. Angewandte Chemie International Edition, 59(2), 910-918. https://doi.org/10.1002/anie.201912668
Reaction conditions of methane-to-methanol conversion affect the structure of active copper sites
Alayon, E. M. C., Nachtegaal, M., Bodi, A., & van Bokhoven, J. A. (2014). Reaction conditions of methane-to-methanol conversion affect the structure of active copper sites. ACS Catalysis, 4(1), 16-22. https://doi.org/10.1021/cs400713c
Role of bismuth in the stability of Pt–Bi bimetallic catalyst for methane mediated deoxygenation of guaiacol, an APXPS study
Roy, K., Artiglia, L., Xiao, Y., Varma, A., & van Bokhoven, J. A. (2019). Role of bismuth in the stability of Pt–Bi bimetallic catalyst for methane mediated deoxygenation of guaiacol, an APXPS study. ACS Catalysis, 9(4), 3694-3699. https://doi.org/10.1021/acscatal.8b04699
Stepwise conversion of methane to methanol over Cu-mordenite prepared by supercritical and aqueous ion exchange routes and quantification of active Cu species by H<sub>2</sub>-TPR
Yousefzadeh, H., Bozbag, S. E., Sushkevich, V., van Bokhoven, J. A., & Erkey, C. (2023). Stepwise conversion of methane to methanol over Cu-mordenite prepared by supercritical and aqueous ion exchange routes and quantification of active Cu species by H2-TPR. Catalysis Communications, 174, 106574 (8 pp.). https://doi.org/10.1016/j.catcom.2022.106574
The effect of the active-site structure on the activity of copper mordenite in the aerobic and anaerobic conversion of methane into methanol
Sushkevich, V. L., Palagin, D., & van Bokhoven, J. A. (2018). The effect of the active-site structure on the activity of copper mordenite in the aerobic and anaerobic conversion of methane into methanol. Angewandte Chemie International Edition, 57(29), 8906-8910. https://doi.org/10.1002/anie.201802922