| Expression, purification, and nanodisc reconstitution of connexin-43 hemichannels for structural characterization by cryo-electron microscopyp
Lavriha, P., Qi, C., & Korkhov, V. M. (2024). Expression, purification, and nanodisc reconstitution of connexin-43 hemichannels for structural characterization by cryo-electron microscopyp. In F. Mammano & M. Retamal (Eds.), Methods in molecular biology: Vol. 2801. Connexin hemichannels. Methods and protocols (pp. 29-43). https://doi.org/10.1007/978-1-0716-3842-2_3 |
| Thermoplastic microfluidics
Kristiansen, P. M., Karpik, A., Werder, J., Guilherme, M., & Grob, M. (2022). Thermoplastic microfluidics. In M. Rasponi (Ed.), Methods in molecular biology: Vol. 2373. Organ-on-a-chip. Methods and protocols (pp. 39-55). https://doi.org/10.1007/978-1-0716-1693-2_3 |
| Expression and crystallization of HDAC6 tandem catalytic domains
Langousis, G., Sanchez, J., Kempf, G., & Matthias, P. (2022). Expression and crystallization of HDAC6 tandem catalytic domains. In O. H. Krämer (Ed.), Methods in molecular biology: Vol. 2589. HDAC/HAT function assessment and inhibitor development. Methods and protocols (pp. 467-480). https://doi.org/10.1007/978-1-0716-2788-4_30 |
| Crystallization systems for the high-resolution structural analysis of tubulin-ligand complexes
Mühlethaler, T., Olieric, N., Ehrhard, V. A., Wranik, M., Standfuss, J., Sharma, A., … Steinmetz, M. O. (2022). Crystallization systems for the high-resolution structural analysis of tubulin-ligand complexes. In H. Inaba (Ed.), Methods in molecular biology: Vol. 2430. Microtubules. Methods and protocols (pp. 349-374). https://doi.org/10.1007/978-1-0716-1983-4_23 |
| Biochemical characterization of GPCR-G protein complex formation
Pamula, F., & Tsai, C. J. (2021). Biochemical characterization of GPCR-G protein complex formation. In I. Schmidt-Krey & J. C. Gumbart (Eds.), Methods in molecular biology: Vol. 2302. Structure and function of membrane proteins (pp. 37-48). https://doi.org/10.1007/978-1-0716-1394-8_3 |
| Production and application of nanobodies for membrane protein structural biology
Brunner, J. D., & Schenck, S. (2020). Production and application of nanobodies for membrane protein structural biology. In C. Perez & T. Maier (Eds.), Methods in molecular biology: Vol. 2127. Expression, purification, and structural biology of membrane proteins (pp. 167-184). https://doi.org/10.1007/978-1-0716-0373-4_12 |
| Affinity purification of membrane proteins
Graeber, E., & Korkhov, V. M. (2020). Affinity purification of membrane proteins. In C. Perez & T. Maier (Eds.), Methods in molecular biology: Vol. 2127. Expression, purification, and structural biology of membrane proteins (pp. 129-137). https://doi.org/10.1007/978-1-0716-0373-4_9 |
| In meso in situ serial X-Ray crystallography (IMISX): a protocol for membrane protein structure determination at the Swiss Light Source
Huang, C. Y., Olieric, V., Caffrey, M., & Wang, M. (2020). In meso in situ serial X-Ray crystallography (IMISX): a protocol for membrane protein structure determination at the Swiss Light Source. In C. Perez & T. Maier (Eds.), Methods in molecular biology: Vol. 2127. Expression, purification, and structural biology of membrane proteins (pp. 293-319). https://doi.org/10.1007/978-1-0716-0373-4_20 |
| GPCR solubilization and quality control
Miljus, T., Sykes, D. A., Harwood, C. R., Vuckovic, Z., & Veprintsev, D. B. (2020). GPCR solubilization and quality control. In C. Perez & T. Maier (Eds.), Methods in molecular biology: Vol. 2127. Expression, purification, and structural biology of membrane proteins (pp. 105-127). https://doi.org/10.1007/978-1-0716-0373-4_8 |
| Membrane protein preparation for serial crystallography using high-viscosity injectors: rhodopsin as an example
Weinert, T., & Panneels, V. (2020). Membrane protein preparation for serial crystallography using high-viscosity injectors: rhodopsin as an example. In C. Perez & T. Maier (Eds.), Methods in molecular biology: Vol. 2127. Expression, purification, and structural biology of membrane proteins (pp. 321-338). https://doi.org/10.1007/978-1-0716-0373-4_21 |
| Preparation of proteoliposomes with purified TMEM16 protein for accurate measures of lipid scramblase activity
Brunner, J. D., & Schenck, S. (2019). Preparation of proteoliposomes with purified TMEM16 protein for accurate measures of lipid scramblase activity. In G. Drin (Ed.), Methods in molecular biology: Vol. 1949. Intracellular lipid transport (pp. 181-199). https://doi.org/10.1007/978-1-4939-9136-5_14 |
| Generation of conformation-specific antibody fragments for crystallization of the multidrug resistance transporter MdfA
Jaenecke, F., Nakada-Nakura, Y., Nagarathinam, K., Ogasawara, S., Liu, K., Hotta, Y., … Tanabe, M. (2018). Generation of conformation-specific antibody fragments for crystallization of the multidrug resistance transporter MdfA. In A. Yamaguchi & K. Nishino (Eds.), Methods in molecular biology: Vol. 1700. Bacterial multidrug exporters. Methods and protocols (pp. 97-109). https://doi.org/10.1007/978-1-4939-7454-2_7 |
| Molecular dynamics as a tool for virtual ligand screening
Menchon, G., Maveyraud, L., & Czaplicki, G. (2018). Molecular dynamics as a tool for virtual ligand screening. In M. Gore & U. B. Jagtap (Eds.), Methods in molecular biology: Vol. 1762. Computational drug discovery and design (pp. 145-178). https://doi.org/10.1007/978-1-4939-7756-7_9 |
| Serial synchrotron X-ray crystallography (SSX)
Diederichs, K., & Wang, M. (2017). Serial synchrotron X-ray crystallography (SSX). In A. Wlodawer, Z. Dauter, & M. Jaskolski (Eds.), Methods in molecular biology: Vol. 1607. Protein crystallography. Methods and protocols (pp. 239-272). https://doi.org/10.1007/978-1-4939-7000-1_10 |
| Advanced crystallographic data collection protocols for experimental phasing
Finke, A. D., Panepucci, E., Vonrhein, C., Wang, M., Bricogne, G., & Oliéric, V. (2016). Advanced crystallographic data collection protocols for experimental phasing. In E. Ennifar (Ed.), Methods in molecular biology: Vol. 1320. Nucleic acid crystallography. Methods and protocols (pp. 175-191). https://doi.org/10.1007%2F978-1-4939-2763-0_11 |
| Mammalian expression, purification, and crystallization of rhodopsin variants
Mattle, D., Singhal, A., Schmid, G., Dawson, R., & Standfuss, J. (2015). Mammalian expression, purification, and crystallization of rhodopsin variants. In B. Jastrzebska (Ed.), Methods in molecular biology: Vol. 1271. Rhodopsin. Methods and protocols (pp. 39-54). https://doi.org/10.1007/978-1-4939-2330-4_3 |
| Practical aspects in expression and purification of membrane proteins for structural analysis
Vinothkumar, K. R., Edwards, P. C., & Standfuss, J. (2013). Practical aspects in expression and purification of membrane proteins for structural analysis. In I. Schmidt-Krey & Y. Cheng (Eds.), Methods in molecular biology: Vol. 955. Electron crystallography of soluble and membrane proteins. Methods and protocols (pp. 17-30). https://doi.org/10.1007/978-1-62703-176-9_2 |
| Targeting cancer with small-molecular-weight kinase inhibitors
Fabbro, D., Cowan-Jacob, S. W., Möbitz, H., & Martiny-Baron, G. (2012). Targeting cancer with small-molecular-weight kinase inhibitors. In B. Kuster (Ed.), Methods in molecular biology: Vol. 795. Kinase inhibitors. Methods and protocols (pp. 1-34). https://doi.org/10.1007/978-1-61779-337-0_1 |
| Radiometal labeling of antibodies and antibody fragments for imaging and therapy
Novak-Hofer, I., Waibel, R., Zimmermann, K., Schibli, R., Grünberg, J., Chester, K. A., … Schubiger, P. A. (2004). Radiometal labeling of antibodies and antibody fragments for imaging and therapy. In B. K. C. Lo (Ed.), Methods in molecular biology: Vol. 248. Antibody engineering. Methods and protocols (pp. 481-494). https://doi.org/10.1385/1-59259-666-5:481 |