| Operando scanning small-/wide-angle X-ray scattering for polymer electrolyte fuel cells: investigation of catalyst layer saturation and membrane hydration- capabilities and challenges
Appel, C., Aliyah, K., Lazaridis, T., Prehal, C., Ammann, M., Xu, L., … Eller, J. (2024). Operando scanning small-/wide-angle X-ray scattering for polymer electrolyte fuel cells: investigation of catalyst layer saturation and membrane hydration- capabilities and challenges. ACS Applied Materials and Interfaces, 16, 25938-25952. https://doi.org/10.1021/acsami.3c11173 |
| Biodegradation by cancer cells of magnetite nanoflowers with and without encapsulation in PS-b-PAA block copolymer micelles
Benassai, E., Daffé, N., Aygun, E., Geeverding, A., Ulku Saritas, E., Wilhelm, C., & Abou-Hassan, A. (2024). Biodegradation by cancer cells of magnetite nanoflowers with and without encapsulation in PS-b-PAA block copolymer micelles. ACS Applied Materials and Interfaces, 16(27), 34772-34782. https://doi.org/10.1021/acsami.4c08727 |
| Extreme ultraviolet photoresponse of organotin-based photoresists with borate counteranions
Evrard, Q., Sadegh, N., Mathew, S., Zuidinga, E., Watts, B., Paradiz Dominguez, M., … Brouwer, A. M. (2024). Extreme ultraviolet photoresponse of organotin-based photoresists with borate counteranions. ACS Applied Materials and Interfaces, 16, 42947-42956. https://doi.org/10.1021/acsami.4c08636 |
| Fully magnetically polarized ultrathin La<sub>0.8</sub>Sr<sub>0.2</sub>MnO<sub>3</sub> films
Stramaglia, F., Panchal, G., Nolting, F., & Vaz, C. A. F. (2024). Fully magnetically polarized ultrathin La0.8Sr0.2MnO3 films. ACS Applied Materials and Interfaces, 16(3), 4138-4149. https://doi.org/10.1021/acsami.3c14031 |
| Cathode catalyst layer design in PEM water electrolysis toward reduced Pt loading and hydrogen crossover
Zhang, Z., Baudy, A., Testino, A., & Gubler, L. (2024). Cathode catalyst layer design in PEM water electrolysis toward reduced Pt loading and hydrogen crossover. ACS Applied Materials and Interfaces, 16(18), 23265-23277. https://doi.org/10.1021/acsami.4c01827 |
| Determining the proximity effect-induced magnetic moment in graphene by polarized neutron reflectivity and X-ray magnetic circular dichroism
Aboljadayel, R. O. M., Kinane, C. J., Vaz, C. A. F., Love, D. M., Weatherup, R. S., Braeuninger-Weimer, P., … Langridge, S. (2023). Determining the proximity effect-induced magnetic moment in graphene by polarized neutron reflectivity and X-ray magnetic circular dichroism. ACS Applied Materials and Interfaces, 15(18), 22367-22376. https://doi.org/10.1021/acsami.2c02840 |
| Quantification of PEFC catalyst layer saturation via in silico, ex situ, and in situ small-angle X-ray scattering
Aliyah, K., Prehal, C., Diercks, J. S., Diklić, N., Xu, L., Ünsal, S., … Eller, J. (2023). Quantification of PEFC catalyst layer saturation via in silico, ex situ, and in situ small-angle X-ray scattering. ACS Applied Materials and Interfaces, 15(22), 26538-26553. https://doi.org/10.1021/acsami.3c00420 |
| OligoBinders: bioengineered soluble amyloid-like nanoparticles to bind and neutralize SARS-CoV-2
Behbahanipour, M., Benoit, R., Navarro, S., & Ventura, S. (2023). OligoBinders: bioengineered soluble amyloid-like nanoparticles to bind and neutralize SARS-CoV-2. ACS Applied Materials and Interfaces, 15(9), 11444-11457. https://doi.org/10.1021/acsami.2c18305 |
| Rheological properties of ionically crosslinked viscoelastic 2D films vs. corresponding 3D bulk hydrogels
De Angelis, G., Lutz-Bueno, V., & Amstad, E. (2023). Rheological properties of ionically crosslinked viscoelastic 2D films vs. corresponding 3D bulk hydrogels. ACS Applied Materials and Interfaces, 15(19), 23758-23764. https://doi.org/10.1021/acsami.3c02675 |
| First-principles assessment of CdTe as a tunnel barrier at the <em>α</em>-Sn/InSb interface
Jardine, M. J. A., Dardzinski, D., Yu, M., Purkayastha, A., Chen, A. H., Chang, Y. H., … Marom, N. (2023). First-principles assessment of CdTe as a tunnel barrier at the α-Sn/InSb interface. ACS Applied Materials and Interfaces, 15(12), 16288-16298. https://doi.org/10.1021/acsami.3c00323 |
| Promoting photocatalytic activity of NH<sub>2</sub> -MIL-125(Ti) for H<sub>2</sub> evolution reaction through creation of Ti III - and Co<sup>I</sup>-based proton reduction sites
Kavun, V., Uslamin, E., van der Linden, B., Canossa, S., Goryachev, A., Bos, E. E., … van der Veen, M. A. (2023). Promoting photocatalytic activity of NH2 -MIL-125(Ti) for H2 evolution reaction through creation of Ti III - and CoI-based proton reduction sites. ACS Applied Materials and Interfaces, 15(47), 54590-54601. https://doi.org/10.1021/acsami.3c15490 |
| Integration of Li<sub>4</sub>Ti<sub>5</sub>O<sub>12 </sub>crystalline films on silicon toward high-rate performance lithionic devices
Lacey, S. D., Gilardi, E., Müller, E., Merckling, C., Saint-Girons, G., Botella, C., … El Kazzi, M. (2023). Integration of Li4Ti5O12 crystalline films on silicon toward high-rate performance lithionic devices. ACS Applied Materials and Interfaces, 15(1), 1535-1544. https://doi.org/10.1021/acsami.2c17073 |
| Effects of hydrophobicity treatment of gas diffusion layers on ice crystallization in polymer electrolyte fuel cells
Liu, W., Lee, J., Manzi-Orezzoli, V., Ntalis, M., Schmidt, T. J., & Boillat, P. (2023). Effects of hydrophobicity treatment of gas diffusion layers on ice crystallization in polymer electrolyte fuel cells. ACS Applied Materials and Interfaces, 15(14), 17779-17790. https://doi.org/10.1021/acsami.2c22155 |
| Mixed organic cations promote ambient light-induced formation of metallic lead in lead halide perovskite crystals
Ray, A., Martín-García, B., Prato, M., Moliterni, A., Bordignon, S., Spirito, D., … Abdelhady, A. L. (2023). Mixed organic cations promote ambient light-induced formation of metallic lead in lead halide perovskite crystals. ACS Applied Materials and Interfaces, 15(23), 28166-28174. https://doi.org/10.1021/acsami.3c03366 |
| Combined theoretical and experimental study of the Moiré dislocation network at the SrTiO<sub>3</sub>-(La,Sr)(Al,Ta)O<sub>3</sub> interface
Ricca, C., Skoropata, E., Rossell, M. D., Erni, R., Staub, U., & Aschauer, U. (2023). Combined theoretical and experimental study of the Moiré dislocation network at the SrTiO3-(La,Sr)(Al,Ta)O3 interface. ACS Applied Materials and Interfaces, 15(46), 53678-53687. https://doi.org/10.1021/acsami.3c10958 |
| Renewable energy from livestock waste valorization: amyloid-based feather keratin fuel cells
Soon, W. L., Peydayesh, M., de Wild, T., Donat, F., Saran, R., Müller, C. R., … Miserez, A. (2023). Renewable energy from livestock waste valorization: amyloid-based feather keratin fuel cells. ACS Applied Materials and Interfaces, 15(40), 47049-47057. https://doi.org/10.1021/acsami.3c10218 |
| Enhanced exchange bias in epitaxial high-entropy oxide heterostructures
Wang, H., Huang, H., Feng, Y., Ku, Y. C., Liu, C. E., Chen, S., … Chen, Z. (2023). Enhanced exchange bias in epitaxial high-entropy oxide heterostructures. ACS Applied Materials and Interfaces, 15(50), 58643-58650. https://doi.org/10.1021/acsami.3c14943 |
| Sulfonium-functionalized polystyrene-based nonchemically amplified resists enabling sub-13 nm nanolithography
Wang, Z., Chen, J., Yu, T., Zeng, Y., Guo, X., Wang, S., … Li, Y. (2023). Sulfonium-functionalized polystyrene-based nonchemically amplified resists enabling sub-13 nm nanolithography. ACS Applied Materials and Interfaces, 15(1), 2289-2300. https://doi.org/10.1021/acsami.2c19940 |
| How the porous transport layer interface affects catalyst utilization and performance in polymer electrolyte water electrolysis
Weber, C. C., Wrubel, J. A., Gubler, L., Bender, G., De Angelis, S., & Büchi, F. N. (2023). How the porous transport layer interface affects catalyst utilization and performance in polymer electrolyte water electrolysis. ACS Applied Materials and Interfaces, 15(29), 34750-34763. https://doi.org/10.1021/acsami.3c04151 |
| Taurine electrografting onto porous electrodes improves redox flow battery performance
Boz, E. B., Boillat, P., & Forner-Cuenca, A. (2022). Taurine electrografting onto porous electrodes improves redox flow battery performance. ACS Applied Materials and Interfaces, 14(37), 41883-41895. https://doi.org/10.1021/acsami.2c08211 |