Active Filters

  • (-) Journals = ACS Chemical Biology
Search Results 1 - 20 of 48
Select Page
<em>In vitro</em> reconstitution of a five-step pathway for bacterial ergothioneine catabolism
Beliaeva, M. A., Leisinger, F., & Seebeck, F. P. (2021). In vitro reconstitution of a five-step pathway for bacterial ergothioneine catabolism. ACS Chemical Biology, 16(2), 397-403. https://doi.org/10.1021/acschembio.0c00968
Structure and inhibitor binding characterization of oncogenic MLLT1 mutants
Ni, X., Londregan, A. T., Owen, D. R., Knapp, S., & Chaikuad, A. (2021). Structure and inhibitor binding characterization of oncogenic MLLT1 mutants. ACS Chemical Biology, 16(4), 571-578. https://doi.org/10.1021/acschembio.0c00960
Targeting cavity-creating p53 cancer mutations with small-molecule stabilizers: the Y220X paradigm
Bauer, M. R., Krämer, A., Settanni, G., Jones, R. N., Ni, X., Khan Tareque, R., … Joerger, A. C. (2020). Targeting cavity-creating p53 cancer mutations with small-molecule stabilizers: the Y220X paradigm. ACS Chemical Biology, 15(3), 657-668. https://doi.org/10.1021/acschembio.9b00748
Selectively disrupting m<sup>6</sup>A-dependent protein-RNA interactions with fragments
Bedi, R. K., Huang, D., Wiedmer, L., Li, Y., Dolbois, A., Wojdyla, J. A., … Sledz, P. (2020). Selectively disrupting m6A-dependent protein-RNA interactions with fragments. ACS Chemical Biology, 15(3), 618-625. https://doi.org/10.1021/acschembio.9b00894
Structure-guided design of a peptide lock for modular peptide binders
Ernst, P., Zosel, F., Reichen, C., Nettels, D., Schuler, B., & Plückthun, A. (2020). Structure-guided design of a peptide lock for modular peptide binders. ACS Chemical Biology, 15(2), 457-468. https://doi.org/10.1021/acschembio.9b00928
Non-heme monooxygenase ThoJ catalyzes thioholgamide &lt;em&gt;β&lt;/em&gt;-hydroxylation
Sikandar, A., Lopatniuk, M., Luzhetskyy, A., & Koehnke, J. (2020). Non-heme monooxygenase ThoJ catalyzes thioholgamide β-hydroxylation. ACS Chemical Biology, 15(10), 2815-2819. https://doi.org/10.1021/acschembio.0c00637
Functional and structural insights into a novel promiscuous ketoreductase of the lugdunomycin biosynthetic pathway
Xiao, X., Elsayed, S. S., Wu, C., van der Heul, H. U., Metsä-Ketelä, M., Du, C., … van Wezel, G. P. (2020). Functional and structural insights into a novel promiscuous ketoreductase of the lugdunomycin biosynthetic pathway. ACS Chemical Biology, 15(9), 2529-2538. https://doi.org/10.1021/acschembio.0c00564
X-ray crystal structures of short antimicrobial peptides as &lt;em&gt;Pseudomonas aeruginosa&lt;/em&gt; lectin B complexes
Baeriswyl, S., Gan, B. H., Siriwardena, T. N., Visini, R., Robadey, M., Javor, S., … Reymond, J. L. (2019). X-ray crystal structures of short antimicrobial peptides as Pseudomonas aeruginosa lectin B complexes. ACS Chemical Biology, 14(4), 758-766. https://doi.org/10.1021/acschembio.9b00047
Discovery and structural characterization of ATP-site ligands for the wild-type and V617F mutant JAK2 pseudokinase domain
McNally, R., Li, Q., Li, K., Dekker, C., Vangrevelinghe, E., Jones, M., … Eck, M. J. (2019). Discovery and structural characterization of ATP-site ligands for the wild-type and V617F mutant JAK2 pseudokinase domain. ACS Chemical Biology, 14(4), 587-593. https://doi.org/10.1021/acschembio.8b00722
DNA-encoded library-derived DDR1 inhibitor prevents fibrosis and renal function loss in a genetic mouse model of Alport syndrome
Richter, H., Satz, A. L., Bedoucha, M., Buettelmann, B., Petersen, A. C., Harmeier, A., … Prunotto, M. (2019). DNA-encoded library-derived DDR1 inhibitor prevents fibrosis and renal function loss in a genetic mouse model of Alport syndrome. ACS Chemical Biology, 14(1), 37-49. https://doi.org/10.1021/acschembio.8b00866
Structural and mechanistic basis of an oxepin-CoA forming isomerase in bacterial primary and secondary metabolism
Spieker, M., Saleem-Batcha, R., & Teufel, R. (2019). Structural and mechanistic basis of an oxepin-CoA forming isomerase in bacterial primary and secondary metabolism. ACS Chemical Biology, 14(12), 2876-2886. https://doi.org/10.1021/acschembio.9b00742
Deciphering the allosteric binding mechanism of the human tropomyosin receptor kinase A (&lt;em&gt;h&lt;/em&gt;TrkA) inhibitors
Subramanian, G., Johnson, P. D., Zachary, T., Roush, N., Zhu, Y., Bowen, S. J., … Hirsch, J. L. (2019). Deciphering the allosteric binding mechanism of the human tropomyosin receptor kinase A (hTrkA) inhibitors. ACS Chemical Biology, 14(6), 1205-1216. https://doi.org/10.1021/acschembio.9b00126
A predictive approach for the optical control of carbonic anhydrase II activity
DuBay, K. H., Iwan, K., Osorio-Planes, L., Geissler, P. L., Groll, M., Trauner, D., & Broichhagen, J. (2018). A predictive approach for the optical control of carbonic anhydrase II activity. ACS Chemical Biology, 13(3), 793-800. https://doi.org/10.1021/acschembio.7b00862
Identification and Experimental Characterization of an Extremophilic Brine Pool Alcohol Dehydrogenase from Single Amplified Genomes
Grötzinger, S. W., Karan, R., Strillinger, E., Bader, S., Frank, A., Al Rowaihi, I. S., … Arold, S. T. (2018). Identification and Experimental Characterization of an Extremophilic Brine Pool Alcohol Dehydrogenase from Single Amplified Genomes. ACS Chemical Biology, 13(1), 161-170. https://doi.org/10.1021/acschembio.7b00792
Characterization of the polyspecific transferase of murine type I fatty acid synthase (FAS) and implications for polyketide synthase (PKS) engineering
Rittner, A., Paithankar, K. S., Huu, K. V., & Grininger, M. (2018). Characterization of the polyspecific transferase of murine type I fatty acid synthase (FAS) and implications for polyketide synthase (PKS) engineering. ACS Chemical Biology, 13(3), 723-732. https://doi.org/10.1021/acschembio.7b00718
Gliotoxin Biosynthesis: Structure, Mechanism, and Metal Promiscuity of Carboxypeptidase GliJ
Marion, A., Groll, M., Scharf, D. H., Scherlach, K., Glaser, M., Sievers, H., … Huber, E. M. (2017). Gliotoxin Biosynthesis: Structure, Mechanism, and Metal Promiscuity of Carboxypeptidase GliJ. ACS Chemical Biology, 12(7), 1874-1882. https://doi.org/10.1021/acschembio.6b00847
Mechanism of Allosteric Inhibition of the Enzyme IspD by Three Different Classes of Ligands
Schwab, A., Illarionov, B., Frank, A., Kunfermann, A., Seet, M., Bacher, A., … Diederich, F. (2017). Mechanism of Allosteric Inhibition of the Enzyme IspD by Three Different Classes of Ligands. ACS Chemical Biology, 12(8), 2132-2138. https://doi.org/10.1021/acschembio.7b00004
The Escherichia coli Periplasmic Aldehyde Oxidoreductase Is an Exceptional Member of the Xanthine Oxidase Family of Molybdoenzymes
Correia, M. A. S., Otrelo-Cardoso, A. R., Schwuchow, V., Sigfridsson Clauss, K. G. V., Haumann, M., Romão, M. J., … Santos-Silva, T. (2016). The Escherichia coli Periplasmic Aldehyde Oxidoreductase Is an Exceptional Member of the Xanthine Oxidase Family of Molybdoenzymes. ACS Chemical Biology, 11(10), 2923-2935. https://doi.org/10.1021/acschembio.6b00572
IDD388 Polyhalogenated Derivatives as Probes for an Improved Structure-Based Selectivity of AKR1B10 Inhibitors
Cousido-Siah, A., Ruiz, F. X., Fanfrlík, J., Giménez-Dejoz, J., Mitschler, A., Kamlar, M., … Podjarny, A. D. (2016). IDD388 Polyhalogenated Derivatives as Probes for an Improved Structure-Based Selectivity of AKR1B10 Inhibitors. ACS Chemical Biology, 11(10), 2693-2705. https://doi.org/10.1021/acschembio.6b00382
Sequential Inactivation of Gliotoxin by the S-Methyltransferase TmtA
Duell, E. R., Glaser, M., Le Chapelain, C., Antes, I., Groll, M., & Huber, E. M. (2016). Sequential Inactivation of Gliotoxin by the S-Methyltransferase TmtA. ACS Chemical Biology, 11(4), 1082-1089. https://doi.org/10.1021/acschembio.5b00905