Active Filters

  • (-) Journals = Analytical Chemistry
Search Results 1 - 20 of 27
Select Page
Challenging a preconception: Optoacoustic spectrum differs from the optical absorption spectrum of proteins and dyes for molecular imaging
Fuenzalida Werner, J. P., Huang, Y., Mishra, K., Janowski, R., Vetschera, P., Heichler, C., … Stiel, A. C. (2020). Challenging a preconception: Optoacoustic spectrum differs from the optical absorption spectrum of proteins and dyes for molecular imaging. Analytical Chemistry, 92(15), 10717-10724. https://doi.org/10.1021/acs.analchem.0c01902
Real-time detection of aerosol metals using online extractive electrospray ionization mass spectrometry
Giannoukos, S., Lee, C. P., Tarik, M., Ludwig, C., Biollaz, S., Lamkaddam, H., … Slowik, J. (2020). Real-time detection of aerosol metals using online extractive electrospray ionization mass spectrometry. Analytical Chemistry, 92(1), 1316-1325. https://doi.org/10.1021/acs.analchem.9b04480
<em>Post mortem</em> and<em> operando </em>XPEEM: a surface-sensitive tool for studying single particles in Li-Ion battery composite electrodes
Mirolo, M., Leanza, D., Höltschi, L., Jordy, C., Pelé, V., Novák, P., … Vaz, C. A. F. (2020). Post mortem and operando XPEEM: a surface-sensitive tool for studying single particles in Li-Ion battery composite electrodes. Analytical Chemistry, 92(4), 3023-3031. https://doi.org/10.1021/acs.analchem.9b04124
Direct injection liquid chromatography high-resolution mass spectrometry for determination of primary and secondary terrestrial and marine biomarkers in ice cores
King, A. C. F., Giorio, C., Wolff, E., Thomas, E., Roverso, M., Schwikowski, M., … Kalberer, M. (2019). Direct injection liquid chromatography high-resolution mass spectrometry for determination of primary and secondary terrestrial and marine biomarkers in ice cores. Analytical Chemistry, 91(8), 5051-5057. https://doi.org/10.1021/acs.analchem.8b05224
Operando EQCM-D with simultaneous in situ EIS: new insights into interphase formation in Li ion batteries
Kitz, P. G., Lacey, M. J., Novák, P., & Berg, E. J. (2019). Operando EQCM-D with simultaneous in situ EIS: new insights into interphase formation in Li ion batteries. Analytical Chemistry, 91(3), 2296-2303. https://doi.org/10.1021/acs.analchem.8b04924
Ultrahigh-resolution mass spectrometry in real time: atmospheric pressure chemical ionization orbitrap mass spectrometry of atmospheric organic aerosol
Zuth, C., Vogel, A. L., Ockenfeld, S., Huesmann, R., & Hoffmann, T. (2018). Ultrahigh-resolution mass spectrometry in real time: atmospheric pressure chemical ionization orbitrap mass spectrometry of atmospheric organic aerosol. Analytical Chemistry, 90(15), 8816-8823. https://doi.org/10.1021/acs.analchem.8b00671
Innovative <em>in Situ</em> ball mill for X-ray diffraction
Ban, V., Sadikin, Y., Lange, M., Tumanov, N., Filinchuk, Y., Černý, R., & Casati, N. (2017). Innovative in Situ ball mill for X-ray diffraction. Analytical Chemistry, 89(24), 13176-13181. https://doi.org/10.1021/acs.analchem.7b02871
Increasing the sensitivity to short-lived species in a modulated excitation experiment
Marchionni, V., Ferri, D., Kröcher, O., & Wokaun, A. (2017). Increasing the sensitivity to short-lived species in a modulated excitation experiment. Analytical Chemistry, 89(11), 5801-5809. https://doi.org/10.1021/acs.analchem.6b04939
Characterization of the aerosol-based synthesis of uranium particles as a potential reference material for microanalytical methods
Middendorp, R., Dürr, M., Knott, A., Pointurier, F., Ferreira Sanchez, D., Samson, V., & Grolimund, D. (2017). Characterization of the aerosol-based synthesis of uranium particles as a potential reference material for microanalytical methods. Analytical Chemistry, 89(8), 4721-4728. https://doi.org/10.1021/acs.analchem.7b00631
Analysis of the <sup>148</sup>Gd and <sup>154</sup>Dy content in proton-irradiated lead targets
Talip, Z., Pfister, S., Dressler, R., David, J. C., Vögele, A., Vontobel, P., … Schumann, D. (2017). Analysis of the 148Gd and 154Dy content in proton-irradiated lead targets. Analytical Chemistry, 89(12), 6861-6869. https://doi.org/10.1021/acs.analchem.7b01353
Characterization of the axial jet separator with a CO<sub>2</sub>/helium mixture: toward GC-AMS hyphenation
Salazar, G., Agrios, K., Eichler, R., & Szidat, S. (2016). Characterization of the axial jet separator with a CO2/helium mixture: toward GC-AMS hyphenation. Analytical Chemistry, 88(3), 1647-1653. https://doi.org/10.1021/acs.analchem.5b03586
High-speed, high-resolution, multielemental LA-ICP-TOFMS imaging: Part II. critical evaluation of quantitative three-dimensional imaging of major, minor, and trace elements in geological samples
Burger, M., Gundlach-Graham, A., Allner, S., Schwarz, G., Wang, H. A. O., Gyr, L., … Günther, D. (2015). High-speed, high-resolution, multielemental LA-ICP-TOFMS imaging: Part II. critical evaluation of quantitative three-dimensional imaging of major, minor, and trace elements in geological samples. Analytical Chemistry, 87(16), 8259-8267. https://doi.org/10.1021/acs.analchem.5b01977
High-speed, high-resolution, multielemental laser ablation-inductively coupled plasma-time-of-flight mass spectrometry imaging: part I. Instrumentation and two-dimensional imaging of geological samples
Gundlach-Graham, A., Burger, M., Allner, S., Schwarz, G., Wang, H. A. O., Gyr, L., … Günther, D. (2015). High-speed, high-resolution, multielemental laser ablation-inductively coupled plasma-time-of-flight mass spectrometry imaging: part I. Instrumentation and two-dimensional imaging of geological samples. Analytical Chemistry, 87(16), 8250-8258. https://doi.org/10.1021/acs.analchem.5b01196
Radiochemical determination of rare earth elements in proton-irradiated lead-bismuth eutectic
Hammer, B., Neuhausen, J., Boutellier, V., Wohlmuther, M., Türler, A., & Schumann, D. (2015). Radiochemical determination of rare earth elements in proton-irradiated lead-bismuth eutectic. Analytical Chemistry, 87(11), 5656-5663. https://doi.org/10.1021/acs.analchem.5b00955
Depth-resolved X-ray absorption spectroscopy by means of grazing emission X-ray fluorescence
Kayser, Y., Sá, J., & Szlachetko, J. (2015). Depth-resolved X-ray absorption spectroscopy by means of grazing emission X-ray fluorescence. Analytical Chemistry, 87(21), 10815-10821. https://doi.org/10.1021/acs.analchem.5b03346
Real-time metabolic analysis of living cancer cells with correlated cellular spectro-microscopy
Quaroni, L., & Zlateva, T. (2014). Real-time metabolic analysis of living cancer cells with correlated cellular spectro-microscopy. Analytical Chemistry, 86(14), 6887-6895. https://doi.org/10.1021/ac501561x
Determination of the <sup>14</sup>C content in activated steel components from a neutron spallation source and a nuclear power plant
Schumann, D., Stowasser, T., Volmert, B., Günther-Leopold, I., Linder, H., & Wieland, E. (2014). Determination of the 14C content in activated steel components from a neutron spallation source and a nuclear power plant. Analytical Chemistry, 86(11), 5448-5454. https://doi.org/10.1021/ac500654a
High-mass matrix-assisted laser desorption ionization-mass spectrometry of integral membrane proteins and their complexes
Chen, F., Gerber, S., Heuser, K., Korkhov, V. M., Lizak, C., Mireku, S., … Zenobi, R. (2013). High-mass matrix-assisted laser desorption ionization-mass spectrometry of integral membrane proteins and their complexes. Analytical Chemistry, 85(7), 3483-3488. https://doi.org/10.1021/ac4000943
Affinity comparison of p3 and p8 peptide displaying bacteriophages using surface plasmon resonance
Knez, K., Noppe, W., Geukens, N., Janssen, K. P. F., Spasic, D., Heyligen, J., … Lammertyn, J. (2013). Affinity comparison of p3 and p8 peptide displaying bacteriophages using surface plasmon resonance. Analytical Chemistry, 85(21), 10075-10082. https://doi.org/10.1021/ac402192k
Fast chemical imaging at high spatial resolution by laser ablation inductively coupled plasma mass spectrometry
Wang, H. A. O., Grolimund, D., Giesen, C., Borca, C. N., Shaw-Stewart, J. R. H., Bodenmiller, B., & Günther, D. (2013). Fast chemical imaging at high spatial resolution by laser ablation inductively coupled plasma mass spectrometry. Analytical Chemistry, 85(21), 10107-10116. https://doi.org/10.1021/ac400996x