Active Filters

  • (-) Journals = Applied Geochemistry
  • (-) Full Text = Restricted
Search Results 1 - 20 of 62

Pages

  • RSS Feed
Select Page
Diffusion of HTO, <sup>36</sup>Cl and <sup>22</sup>Na in the Mesozoic rocks of Northern Switzerland: III. Cross-lab comparison of diffusion measurements on argillaceous twin samples
Van Laer, L., Aertsens, M., Maes, N., Van Loon, L. R., Glaus, M. A., & Wüst, R. A. J. (2024). Diffusion of HTO, 36Cl and 22Na in the Mesozoic rocks of Northern Switzerland: III. Cross-lab comparison of diffusion measurements on argillaceous twin samples. Applied Geochemistry, 160, 105840 (10 pp.). https://doi.org/10.1016/j.apgeochem.2023.105840
Impact of Fe(II) on <sup>99</sup>Tc diffusion behavior in illite
Chen, P., Churakov, S. V., Glaus, M., & Van Loon, L. R. (2023). Impact of Fe(II) on 99Tc diffusion behavior in illite. Applied Geochemistry, 156, 105759 (9 pp.). https://doi.org/10.1016/j.apgeochem.2023.105759
Investigation of scandium in bauxite residues of different origin
Gentzmann, M. C., Schraut, K., Vogel, C., Gäbler, H. E., Huthwelker, T., & Adam, C. (2021). Investigation of scandium in bauxite residues of different origin. Applied Geochemistry, 126, 104898 (18 pp.). https://doi.org/10.1016/j.apgeochem.2021.104898
Preface / special issue "Geochemistry research for cement-based materials in nuclear waste disposal applications"
Altmaier, M., Lothenbach, B., Metz, V., & Wieland, E. (2020). Preface / special issue "Geochemistry research for cement-based materials in nuclear waste disposal applications". Applied Geochemistry, 123, 104701 (3 pp.). https://doi.org/10.1016/j.apgeochem.2020.104701
Uncertainty and sensitivity analysis of the chemistry of cesium sorption in deep geological repositories
Ayoub, A., Pfingsten, W., Podofillini, L., & Sansavini, G. (2020). Uncertainty and sensitivity analysis of the chemistry of cesium sorption in deep geological repositories. Applied Geochemistry, 117, 104607 (12 pp.). https://doi.org/10.1016/j.apgeochem.2020.104607
Profiles of chloride in matrix porewater as natural tracer for matrix diffusion in crystalline rocks
Eichinger, F., Gimmi, T., Möri, A., & Rüedi, J. (2020). Profiles of chloride in matrix porewater as natural tracer for matrix diffusion in crystalline rocks. Applied Geochemistry, 118, 104635 (12 pp.). https://doi.org/10.1016/j.apgeochem.2020.104635
Cation exchange and surface complexation of lead on montmorillonite and illite including competitive adsorption effects
Marques Fernandes, M., & Baeyens, B. (2019). Cation exchange and surface complexation of lead on montmorillonite and illite including competitive adsorption effects. Applied Geochemistry, 100, 190-202. https://doi.org/10.1016/j.apgeochem.2018.11.005
Characterization of spatial porosity and mineral distribution of crystalline rock using X-ray micro computed tomography, C-14-PMMA autoradiography and scanning electron microscopy
Voutilainen, M., Miettinen, A., Sardini, P., Parkkonen, J., Sammaljärvi, J., Gylling, B., … Siitari-Kauppi, M. (2019). Characterization of spatial porosity and mineral distribution of crystalline rock using X-ray micro computed tomography, C-14-PMMA autoradiography and scanning electron microscopy. Applied Geochemistry, 101, 50-61. https://doi.org/10.1016/j.apgeochem.2018.12.024
Combined tracer through-diffusion of HTO and &lt;sup&gt;22&lt;/sup&gt;Na through Na-montmorillonite with different bulk dry densities
Bestel, M., Glaus, M. A., Frick, S., Gimmi, T., Juranyi, F., Van Loon, L. R., & Diamond, L. W. (2018). Combined tracer through-diffusion of HTO and 22Na through Na-montmorillonite with different bulk dry densities. Applied Geochemistry, 93, 158-166. https://doi.org/10.1016/j.apgeochem.2018.04.008
The diffusion of SO&lt;sub&gt;4&lt;/sub&gt;&lt;sup&gt;2-&lt;/sup&gt; in Opalinus Clay: measurements of effective diffusion coefficients and evaluation of their importance in view of microbial mediated reactions in the near field of radioactive waste repos
Van Loon, L. R., Leupin, O. X., & Cloet, V. (2018). The diffusion of SO42- in Opalinus Clay: measurements of effective diffusion coefficients and evaluation of their importance in view of microbial mediated reactions in the near field of radioactive waste repositories. Applied Geochemistry, 95, 19-24. https://doi.org/10.1016/j.apgeochem.2018.05.009
Thermodynamics of the solid solution - aqueous solution system (Ba,Sr,Ra)SO&lt;sub&gt;4&lt;/sub&gt; + H&lt;sub&gt;2&lt;/sub&gt;O: I. the effect of strontium content on radium uptake by barite
Vinograd, V. L., Kulik, D. A., Brandt, F., Klinkenberg, M., Weber, J., Winkler, B., & Bosbach, D. (2018). Thermodynamics of the solid solution - aqueous solution system (Ba,Sr,Ra)SO4 + H2O: I. the effect of strontium content on radium uptake by barite. Applied Geochemistry, 89, 59-74. https://doi.org/10.1016/j.apgeochem.2017.11.009
Thermodynamics of the solid solution - aqueous solution system (Ba,Sr,Ra)SO&lt;sub&gt;4&lt;/sub&gt; + H&lt;sub&gt;2&lt;/sub&gt;O: II. radium retention in barite-type minerals at elevated temperatures
Vinograd, V. L., Kulik, D. A., Brandt, F., Klinkenberg, M., Weber, J., Winkler, B., & Bosbach, D. (2018). Thermodynamics of the solid solution - aqueous solution system (Ba,Sr,Ra)SO4 + H2O: II. radium retention in barite-type minerals at elevated temperatures. Applied Geochemistry, 93, 190-208. https://doi.org/10.1016/j.apgeochem.2017.10.019
Multicomponent diffusion in a 280  m thick argillaceous rock sequence
Wersin, P., Gimmi, T., Mazurek, M., Alt-Epping, P., Pękala, M., & Traber, D. (2018). Multicomponent diffusion in a 280  m thick argillaceous rock sequence. Applied Geochemistry, 95, 110-123. https://doi.org/10.1016/j.apgeochem.2018.05.013
A comparative anion diffusion study on different argillaceous, low permeability sedimentary rocks with various pore waters
Wigger, C., Kennell-Morrison, L., Jensen, M., Glaus, M., & Van Loon, L. (2018). A comparative anion diffusion study on different argillaceous, low permeability sedimentary rocks with various pore waters. Applied Geochemistry, 92, 157-165. https://doi.org/10.1016/j.apgeochem.2018.02.009
Diffusion of radiosulphate and radiocaesium in kaolinite clay (KGa-2): testing the applicability of the pore water diffusion model
Aldaba, D., Glaus, M. A., Van Loon, L. R., Rigol, A., & Vidal, M. (2017). Diffusion of radiosulphate and radiocaesium in kaolinite clay (KGa-2): testing the applicability of the pore water diffusion model. Applied Geochemistry, 86, 84-91. https://doi.org/10.1016/j.apgeochem.2017.09.014
Sorption and diffusion studies with low molecular weight organic compounds in cementitious systems
Wieland, E., Jakob, A., Tits, J., Lothenbach, B., & Kunz, D. (2016). Sorption and diffusion studies with low molecular weight organic compounds in cementitious systems. Applied Geochemistry, 67, 101-117. https://doi.org/10.1016/j.apgeochem.2016.01.009
Preface: SI: geochemical speciation codes and databases
Kulik, D. A., Hummel, W., Lützenkirchen, J., & Lefèvre, G. (2015). Preface: SI: geochemical speciation codes and databases. Applied Geochemistry, 55, 1-2. https://doi.org/10.1016/j.apgeochem.2014.12.019
Treatment of multi-dentate surface complexes and diffuse layer implementation in various speciation codes
Lützenkirchen, J., Marsac, R., Kulik, D. A., Payne, T. E., Xue, Z., Orsetti, S., & Haderlein, S. B. (2015). Treatment of multi-dentate surface complexes and diffuse layer implementation in various speciation codes. Applied Geochemistry, 55, 128-137. https://doi.org/10.1016/j.apgeochem.2014.07.006
Predicting the uptake of Cs, Co, Ni, Eu, Th and U on argillaceous rocks using sorption models for illite
Marques Fernandes, M., Vér, N., & Baeyens, B. (2015). Predicting the uptake of Cs, Co, Ni, Eu, Th and U on argillaceous rocks using sorption models for illite. Applied Geochemistry, 59, 189-199. https://doi.org/10.1016/j.apgeochem.2015.05.006
Reactive transport processes occurring during nuclear glass alteration in presence of magnetite
Rébiscoul, D., Tormos, V., Godon, N., Mestre, J. P., Cabie, M., Amiard, G., … Gin, S. (2015). Reactive transport processes occurring during nuclear glass alteration in presence of magnetite. Applied Geochemistry, 58, 26-37. https://doi.org/10.1016/j.apgeochem.2015.02.018
 

Pages