Active Filters

  • (-) Journals = ChemBioChem
Search Results 1 - 20 of 46
Select Page
CYP154C5 regioselectivity in steroid hydroxylation explored by substrate modifications and protein engineering
Bracco, P., Wijma, H. J., Nicolai, B., Rodriguez Buitrago, J. A., Klünemann, T., Vila, A., … Schallmey, A. (2021). CYP154C5 regioselectivity in steroid hydroxylation explored by substrate modifications and protein engineering. ChemBioChem, 22(6), 1099-1110. https://doi.org/10.1002/cbic.202000735
Activation, structure, biosynthesis and bioactivity of glidobactin-like proteasome inhibitors from <em>Photorhabdus laumondii</em>
Zhao, L., Le Chapelain, C., Brachmann, A. O., Kaiser, M., Groll, M., & Bode, H. B. (2021). Activation, structure, biosynthesis and bioactivity of glidobactin-like proteasome inhibitors from Photorhabdus laumondii. ChemBioChem, 22(9), 1582-1588. https://doi.org/10.1002/cbic.202100014
Structures in tetrahydrofolate methylation in desulfitobacterial glycine betaine metabolism at atomic resolution
Badmann, T., & Groll, M. (2020). Structures in tetrahydrofolate methylation in desulfitobacterial glycine betaine metabolism at atomic resolution. ChemBioChem, 21(6), 776-779. https://doi.org/10.1002/cbic.201900515
Functional characterisation of ClpP mutations conferring resistance to acyldepsipeptide antibiotics in firmicutes
Malik, I. T., Pereira, R., Vielberg, M. T., Mayer, C., Straetener, J., Thomy, D., … Brötz-Oesterhelt, H. (2020). Functional characterisation of ClpP mutations conferring resistance to acyldepsipeptide antibiotics in firmicutes. ChemBioChem, 21(14), 1997-2012. https://doi.org/10.1002/cbic.201900787
Similar but not the same: first kinetic and structural analyses of a methanol dehydrogenase containing a europium ion in the active site
Jahn, B., Pol, A., Lumpe, H., Barends, T. R. M., Dietl, A., Hogendoorn, C., … Daumann, L. J. (2018). Similar but not the same: first kinetic and structural analyses of a methanol dehydrogenase containing a europium ion in the active site. ChemBioChem, 19(11), 1147-1153. https://doi.org/10.1002/cbic.v19.11
The alkylquinolone repertoire of &lt;em&gt;Pseudomonas aeruginosa&lt;/em&gt; is linked to structural flexibility of the FabH-like 2-heptyl-3-hydroxy-4(1&lt;em&gt;H&lt;/em&gt;)-quinolone (PQS) biosynthesis enzyme PqsBC
Witzgall, F., Depke, T., Hoffmann, M., Empting, M., Brönstrup, M., Müller, R., & Blankenfeldt, W. (2018). The alkylquinolone repertoire of Pseudomonas aeruginosa is linked to structural flexibility of the FabH-like 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) biosynthesis enzyme PqsBC. ChemBioChem, 19(14), 1531-1544. https://doi.org/10.1002/cbic.201800153
Structural Elucidation of a Nonpeptidic Inhibitor Specific for the Human Immunoproteasome
Cui, H., Baur, R., Le Chapelain, C., Dubiella, C., Heinemeyer, W., Huber, E. M., & Groll, M. (2017). Structural Elucidation of a Nonpeptidic Inhibitor Specific for the Human Immunoproteasome. ChemBioChem, 18(6), 523-526. https://doi.org/10.1002/cbic.201700021
Discovery of a potent BTK inhibitor with a novel binding mode by using parallel selections with a DNA-encoded chemical library
Cuozzo, J. W., Centrella, P. A., Gikunju, D., Habeshian, S., Hupp, C. D., Keefe, A. D., … Clark, M. A. (2017). Discovery of a potent BTK inhibitor with a novel binding mode by using parallel selections with a DNA-encoded chemical library. ChemBioChem, 18(9), 864-871. https://doi.org/10.1002/cbic.201600573
Structural Insights into the Recognition of N<sub>2</sub>-Aryl- and C8-Aryl DNA Lesions by the Repair Protein XPA/Rad14
Ebert, C., Simon, N., Schneider, S., & Carell, T. (2017). Structural Insights into the Recognition of N2-Aryl- and C8-Aryl DNA Lesions by the Repair Protein XPA/Rad14. ChemBioChem, 18(14), 1379-1382. https://doi.org/10.1002/cbic.201700169
Mechanistic Insights into Cyclic Peptide Generation by DnaE Split-Inteins through Quantitative and Structural Investigation
Kick, L. M., Harteis, S., Koch, M. F., & Schneider, S. (2017). Mechanistic Insights into Cyclic Peptide Generation by DnaE Split-Inteins through Quantitative and Structural Investigation. ChemBioChem, 18(22), 2242-2246. https://doi.org/10.1002/cbic.201700503
Impact of Azidohomoalanine Incorporation on Protein Structure and Ligand Binding
Lehner, F., Kudlinzki, D., Richter, C., Müller-Werkmeister, H. M., Eberl, K. B., Bredenbeck, J., … Silvers, R. (2017). Impact of Azidohomoalanine Incorporation on Protein Structure and Ligand Binding. ChemBioChem, 18(23), 2340-2350. https://doi.org/10.1002/cbic.201700437
Carbohydrate–Lectin Interactions: An Unexpected Contribution to Affinity
Navarra, G., Zihlmann, P., Jakob, R. P., Stangier, K., Preston, R. C., Rabbani, S., … Ernst, B. (2017). Carbohydrate–Lectin Interactions: An Unexpected Contribution to Affinity. ChemBioChem, 18(6), 539-544. https://doi.org/10.1002/cbic.201600615
Structural basis of microtubule stabilization by discodermolide
Prota, A. E., Bargsten, K., Redondo-Horcajo, M., Smith, A. B., Yang, C. P. H., McDaid, H. M., … Steinmetz, M. O. (2017). Structural basis of microtubule stabilization by discodermolide. ChemBioChem, 18(10), 905-909. https://doi.org/10.1002/cbic.201600696
Dual, site-specific modification of antibodies by using solid-phase immobilized microbial transglutaminase
Spycher, P. R., Amann, C. A., Wehrmüller, J. E., Hurwitz, D. R., Kreis, O., Messmer, D., … Schibli, R. (2017). Dual, site-specific modification of antibodies by using solid-phase immobilized microbial transglutaminase. ChemBioChem, 18(19), 1923-1927. https://doi.org/10.1002/cbic.201700188
Structures of the N-Terminal Domain of PqsA in Complex with Anthraniloyl- and 6-Fluoroanthraniloyl-AMP: Substrate Activation in Pseudomonas Quinolone Signal (PQS) Biosynthesis
Witzgall, F., Ewert, W., & Blankenfeldt, W. (2017). Structures of the N-Terminal Domain of PqsA in Complex with Anthraniloyl- and 6-Fluoroanthraniloyl-AMP: Substrate Activation in Pseudomonas Quinolone Signal (PQS) Biosynthesis. ChemBioChem, 18(20), 2045-2055. https://doi.org/10.1002/cbic.201700374
The Structure of LiuC, a 3-Hydroxy-3-Methylglutaconyl CoA Dehydratase Involved in Isovaleryl-CoA Biosynthesis in Myxococcus xanthus, Reveals Insights into Specificity and Catalysis
Bock, T., Reichelt, J., Müller, R., & Blankenfeldt, W. (2016). The Structure of LiuC, a 3-Hydroxy-3-Methylglutaconyl CoA Dehydratase Involved in Isovaleryl-CoA Biosynthesis in Myxococcus xanthus, Reveals Insights into Specificity and Catalysis. ChemBioChem, 17, 1658-1664. https://doi.org/10.1002/cbic.201600225
Constraining an Irregular Peptide Secondary Structure through Ring-Closing Alkyne Metathesis
Cromm, P. M., Wallraven, K., Glas, A., Bier, D., Fürstner, A., Ottmann, C., & Grossmann, T. N. (2016). Constraining an Irregular Peptide Secondary Structure through Ring-Closing Alkyne Metathesis. ChemBioChem, 17(20), 1915-1919. https://doi.org/10.1002/cbic.201600362
Characterization of a Cyanobacterial Haloperoxidase and Evaluation of its Biocatalytic Halogenation Potential
Frank, A., Seel, C. J., Groll, M., & Gulder, T. (2016). Characterization of a Cyanobacterial Haloperoxidase and Evaluation of its Biocatalytic Halogenation Potential. ChemBioChem, 17(21), 2028-2032. https://doi.org/10.1002/cbic.201600417
Structure and Substrate Recognition of the Bottromycin Maturation Enzyme BotP
Mann, G., Huo, L., Adam, S., Nardone, B., Vendome, J., Westwood, N. J., … Koehnke, J. (2016). Structure and Substrate Recognition of the Bottromycin Maturation Enzyme BotP. ChemBioChem, 17(23), 2286-2292. https://doi.org/10.1002/cbic.201600406
Biocatalytic Properties and Structural Analysis of Eugenol Oxidase from Rhodococcus jostii RHA1: A Versatile Oxidative Biocatalyst
Nguyen, Q. T., de Gonzalo, G., Binda, C., Rioz-Martínez, A., Mattevi, A., & Fraaije, M. W. (2016). Biocatalytic Properties and Structural Analysis of Eugenol Oxidase from Rhodococcus jostii RHA1: A Versatile Oxidative Biocatalyst. ChemBioChem, 17, 1359-1366. https://doi.org/10.1002/cbic.201600148