| Visualizing structural and chemical transformations of an industrial Cu/ZnO/Al<sub>2</sub>O<sub>3</sub> pre-catalyst during activation and CO<sub>2</sub> reduction
Huang, X., Beck, A., Fedorov, A., Frey, H., Zhang, B., Klötzer, B., … Willinger, M. G. (2022). Visualizing structural and chemical transformations of an industrial Cu/ZnO/Al2O3 pre-catalyst during activation and CO2 reduction. ChemCatChem, 14(24), e202201280 (7 pp.). https://doi.org/10.1002/cctc.202201280 |
| Conference report: YEuCat Better Together - collaborative catalysis in a changing world
Mendes, P. S. F., Vucetic, N., Valverde-González, A., Delporte, M., Gonçalves, L. P. L., Isapour, G., … Moioli, E. (2022). Conference report: YEuCat Better Together - collaborative catalysis in a changing world. ChemCatChem, 14(15), e202200166 (3 pp.). https://doi.org/10.1002/cctc.202200166 |
| 3D-printed structured reactor with integrated single-atom catalyst film for hydrogenation
Vilé, G., Ng, D., Xie, Z., Martinez-Botella, I., Tsanaktsidis, J., & Hornung, C. H. (2022). 3D-printed structured reactor with integrated single-atom catalyst film for hydrogenation. ChemCatChem, 14(14), e202101941 (7 pp.). https://doi.org/10.1002/cctc.202101941 |
| Enzyme engineering enables inversion of substrate stereopreference of the halogenase WelO5*
Voss, M., Hüppi, S., Schaub, D., Hayashi, T., Ligibel, M., Sager, E., … Buller, R. (2022). Enzyme engineering enables inversion of substrate stereopreference of the halogenase WelO5*. ChemCatChem, 14(24), e202201115 (7 pp.). https://doi.org/10.1002/cctc.202201115 |
| Grafting of alkali metals on fumed silica for the catalytic dehydrogenation of methanol to formaldehyde
Baranowski, C. J., Brandon, J., Bahmanpour, A. M., & Kröcher, O. (2021). Grafting of alkali metals on fumed silica for the catalytic dehydrogenation of methanol to formaldehyde. ChemCatChem, 13(17), 3864-3877. https://doi.org/10.1002/cctc.202100685 |
| Deactivation of industrial Pd/Al<sub>2</sub>O<sub>3</sub> catalysts by ethanol: a spectroscopic study
Carosso, M., Vottero, E., Morandi, S., Manzoli, M., Ferri, D., Fovanna, T., … Groppo, E. (2021). Deactivation of industrial Pd/Al2O3 catalysts by ethanol: a spectroscopic study. ChemCatChem, 13(3), 900-908. https://doi.org/10.1002/cctc.202001615 |
| Precursor nuclearity and ligand effects in atomically-dispersed heterogeneous iron catalysts for alkyne semi-hydrogenation
Faust Akl, D., Ruiz-Ferrando, A., Fako, E., Hauert, R., Safonova, O., Mitchell, S., … Pérez-Ramírez, J. (2021). Precursor nuclearity and ligand effects in atomically-dispersed heterogeneous iron catalysts for alkyne semi-hydrogenation. ChemCatChem, 13(14), 3247-3256. https://doi.org/10.1002/cctc.202100235 |
| Spatially-resolved insights into local activity and structure of Ni-Based CO<sub>2</sub> methanation catalysts in fixed-bed reactors
Serrer, M. A., Stehle, M., Schulte, M. L., Besser, H., Pfleging, W., Saraҫi, E., & Grunwaldt, J. D. (2021). Spatially-resolved insights into local activity and structure of Ni-Based CO2 methanation catalysts in fixed-bed reactors. ChemCatChem, 13(13), 3010-3020. https://doi.org/10.1002/cctc.202100490 |
| <em>In-situ</em> XAS study of catalytic N<sub>2</sub>O decomposition over CuO/CeO<sub>2</sub> catalysts
Zabilskiy, M., Arčon, I., Djinović, P., Tchernychova, E., & Pintar, A. (2021). In-situ XAS study of catalytic N2O decomposition over CuO/CeO2 catalysts. ChemCatChem, 13(7), 1814-1823. https://doi.org/10.1002/cctc.202001829 |
| Selective catalytic reduction of NO with NH<sub>3</sub> on Cu−SSZ-13: deciphering the low and high-temperature rate-limiting steps by transient XAS experiments
Clark, A. H., Nuguid, R. J. G., Steiger, P., Marberger, A., Petrov, A. W., Ferri, D., … Kröcher, O. (2020). Selective catalytic reduction of NO with NH3 on Cu−SSZ-13: deciphering the low and high-temperature rate-limiting steps by transient XAS experiments. ChemCatChem, 12(5), 1429-1435. https://doi.org/10.1002/cctc.201901916 |
| CO<sub>2</sub>-promoted catalytic process forming higher alcohols with tunable nature at record productivity
Luk, H. T., Novak, G., Safonova, O. V., Siol, S., Stewart, J. A., Curulla Ferré, D., … Pérez-Ramírez, J. (2020). CO2-promoted catalytic process forming higher alcohols with tunable nature at record productivity. ChemCatChem, 12(10), 2732-2744. https://doi.org/10.1002/cctc.202000059 |
| Investigating the active species in a [(R‐SN(H)S‐R)CrCl<sub>3</sub>] ethene trimerization system: mononuclear or dinuclear?
Venderbosch, B., Oudsen, J. ‐P. H., Martin, D. J., Bruin, B., Korstanje, T. J., & Tromp, M. (2020). Investigating the active species in a [(R‐SN(H)S‐R)CrCl3] ethene trimerization system: mononuclear or dinuclear? ChemCatChem, 12(3), 881-892. https://doi.org/10.1002/cctc.201901640 |
| Insights into the nature of the active sites of tin‐montmorillonite for the synthesis of polyoxymethylene dimethyl ethers (OME)
Baranowski, C. J., Bahmanpour, A. M., Héroguel, F., Luterbacher, J. S., & Kröcher, O. (2019). Insights into the nature of the active sites of tin‐montmorillonite for the synthesis of polyoxymethylene dimethyl ethers (OME). ChemCatChem, 11(13), 3010-3021. https://doi.org/10.1002/cctc.201900502 |
| Deactivation of methanation catalyst (Ru/C) under supercritical water by deposition of non-volatile organics: first insights into deposition patterns and chemical properties
Bjelić, S., Gasser, U., Alxneit, I., & Vogel, F. (2019). Deactivation of methanation catalyst (Ru/C) under supercritical water by deposition of non-volatile organics: first insights into deposition patterns and chemical properties. ChemCatChem, 11(6), 1747-1755. https://doi.org/10.1002/cctc.201801615 |
| Structure sensitivity in hydrogenation reactions on Pt/C in aqueous‐phase
Sanyal, U., Song, Y., Singh, N., Fulton, J. L., Herranz, J., Jentys, A., … Lercher, J. A. (2019). Structure sensitivity in hydrogenation reactions on Pt/C in aqueous‐phase. ChemCatChem, 11(1), 575-582. https://doi.org/10.1002/cctc.201801344 |
| Spirobifluorene-based porous organic polymers as efficient porous supports for Pd and Pt for selective hydrogenation
Trandafir, M. M., Pop, L., Hӑdade, N. D., Hristea, I., Teodorescu, C. M., Krumeich, F., … Parvulescu, V. I. (2019). Spirobifluorene-based porous organic polymers as efficient porous supports for Pd and Pt for selective hydrogenation. ChemCatChem, 11(1), 538-549. https://doi.org/10.1002/cctc.201801247 |
| Correlative multiscale 3D imaging of a hierarchical nanoporous gold catalyst by electron, ion and X-ray nanotomography
Fam, Y., Sheppard, T. L., Diaz, A., Scherer, T., Holler, M., Wang, W., … Grunwaldt, J. D. (2018). Correlative multiscale 3D imaging of a hierarchical nanoporous gold catalyst by electron, ion and X-ray nanotomography. ChemCatChem, 10(13), 2858-2867. https://doi.org/10.1002/cctc.201800230 |
| Copper-exchanged omega (MAZ) zeolite: copper-concentration dependent active sites and its unprecedented methane to methanol conversion
Knorpp, A. J., Pinar, A. B., Newton, M. A., Sushkevich, V. L., & van Bokhoven, J. A. (2018). Copper-exchanged omega (MAZ) zeolite: copper-concentration dependent active sites and its unprecedented methane to methanol conversion. ChemCatChem, 10(24), 5593-5596. https://doi.org/10.1002/cctc.201801809 |
| Visualization of structural changes during deactivation and regeneration of FAU zeolite for catalytic fast pyrolysis of lignin using NMR and electron microscopy techniques
Ma, Z., Ghosh, A., Asthana, N., & van Bokhoven, J. (2018). Visualization of structural changes during deactivation and regeneration of FAU zeolite for catalytic fast pyrolysis of lignin using NMR and electron microscopy techniques. ChemCatChem, 10(19), 4431-4437. https://doi.org/10.1002/cctc.201800670 |
| Homogeneous copper-catalyzed conversion of methane to methyl trifluoroacetate in high yield at low pressure
Ravi, M., & van Bokhoven, J. A. (2018). Homogeneous copper-catalyzed conversion of methane to methyl trifluoroacetate in high yield at low pressure. ChemCatChem, 10(11), 2383-2386. https://doi.org/10.1002/cctc.201800412 |