| Temporal markers in a temperate ice core: insights from <sup>3</sup>H and <sup>137</sup>Cs profiles from the Adamello Glacier
Di Stefano, E., Baccolo, G., Clemenza, M., Delmonte, B., Fiorini, D., Garzonio, R., … Maggi, V. (2024). Temporal markers in a temperate ice core: insights from 3H and 137Cs profiles from the Adamello Glacier. Cryosphere, 18(6), 2865-2874. https://doi.org/10.5194/tc-18-2865-2024 |
| Fifty years of firn evolution on Grigoriev ice cap, Tien Shan, Kyrgyzstan
MacHguth, H., Eichler, A., Schwikowski, M., Brütsch, S., Mattea, E., Kutuzov, S., … Kronenberg, M. (2024). Fifty years of firn evolution on Grigoriev ice cap, Tien Shan, Kyrgyzstan. Cryosphere, 18(4), 1633-1646. https://doi.org/10.5194/tc-18-1633-2024 |
| Review article: melt-affected ice cores for polar research in a warming world
Moser, D. E., Thomas, E. R., Nehrbass-Ahles, C., Eichler, A., & Wolff, E. (2024). Review article: melt-affected ice cores for polar research in a warming world. Cryosphere, 18(6), 2691-2718. https://doi.org/10.5194/tc-18-2691-2024 |
| Climate change is rapidly deteriorating the climatic signal in Svalbard glaciers
Spolaor, A., Scoto, F., Larose, C., Barbaro, E., Burgay, F., Bjorkman, M. P., … Gallet, J. C. (2024). Climate change is rapidly deteriorating the climatic signal in Svalbard glaciers. Cryosphere, 18(1), 307-320. https://doi.org/10.5194/tc-18-307-2024 |
| 200-year ice core bromine reconstruction at Dome C (Antarctica): observational and modelling results
Burgay, F., Fernández, R. P., Segato, D., Turetta, C., Blaszczak-Boxe, C. S., Rhodes, R. H., … Spolaor, A. (2023). 200-year ice core bromine reconstruction at Dome C (Antarctica): observational and modelling results. Cryosphere, 17(1), 391-405. https://doi.org/10.5194/tc-17-391-2023 |
| Consistent histories of anthropogenic western European air pollution preserved in different Alpine ice cores
Eichler, A., Legrand, M., Jenk, T. M., Preunkert, S., Andersson, C., Eckhardt, S., … Schwikowski, M. (2023). Consistent histories of anthropogenic western European air pollution preserved in different Alpine ice cores. Cryosphere, 17(5), 2119-2137. https://doi.org/10.5194/tc-17-2119-2023 |
| Early Holocene ice on the Begguya plateau (Mt. Hunter, Alaska) revealed by ice core <sup>14</sup>C age constraints
Fang, L., Jenk, T. M., Winski, D., Kreutz, K., Brooks, H. L., Erwin, E., … Schwikowski, M. (2023). Early Holocene ice on the Begguya plateau (Mt. Hunter, Alaska) revealed by ice core 14C age constraints. Cryosphere, 17(9), 4007-4020. https://doi.org/10.5194/tc-17-4007-2023 |
| Detection of ice core particles via deep neural networks
Maffezzoli, N., Cook, E., Van Der Bilt, W. G. M., Storen, E. N., Festi, D., Muthreich, F., … Barbante, C. (2023). Detection of ice core particles via deep neural networks. Cryosphere, 17(2), 539-565. https://doi.org/10.5194/tc-17-539-2023 |
| A quantitative method of resolving annual precipitation for the past millennia from Tibetan ice cores
Zhang, W., Hou, S., Wu, S. Y., Pang, H., Sneed, S. B., Korotkikh, E. V., … Schwikowski, M. (2022). A quantitative method of resolving annual precipitation for the past millennia from Tibetan ice cores. Cryosphere, 16(5), 1997-2008. https://doi.org/10.5194/tc-16-1997-2022 |
| Interfacial supercooling and the precipitation of hydrohalite in frozen NaCl solutions as seen by X-ray absorption spectroscopy
Bartels-Rausch, T., Kong, X., Orlando, F., Artiglia, L., Waldner, A., Huthwelker, T., & Ammann, M. (2021). Interfacial supercooling and the precipitation of hydrohalite in frozen NaCl solutions as seen by X-ray absorption spectroscopy. Cryosphere, 15(4), 2001-2020. https://doi.org/10.5194/tc-15-2001-2021 |
| Radiocarbon dating of alpine ice cores with the dissolved organic carbon (DOC) fraction
Fang, L., Jenk, T. M., Singer, T., Hou, S., & Schwikowski, M. (2021). Radiocarbon dating of alpine ice cores with the dissolved organic carbon (DOC) fraction. Cryosphere, 15(3), 1537-1550. https://doi.org/10.5194/tc-15-1537-2021 |
| Significant mass loss in the accumulation area of the Adamello glacier indicated by the chronology of a 46 m ice core
Festi, D., Schwikowski, M., Maggi, V., Oeggl, K., & Jenk, T. M. (2021). Significant mass loss in the accumulation area of the Adamello glacier indicated by the chronology of a 46 m ice core. Cryosphere, 15(8), 4135-4143. https://doi.org/10.5194/tc-15-4135-2021 |
| Crystallographic analysis of temperate ice on Rhonegletscher, Swiss Alps
Hellmann, S., Kerch, J., Weikusat, I., Bauder, A., Grab, M., Jouvet, G., … Maurer, H. (2021). Crystallographic analysis of temperate ice on Rhonegletscher, Swiss Alps. Cryosphere, 15(2), 677-694. https://doi.org/10.5194/tc-15-677-2021 |
| Brief communication: new evidence further constraining Tibetan ice core chronologies to the Holocene
Hou, S., Zhang, W., Fang, L., Jenk, T. M., Wu, S., Pang, H., & Schwikowski, M. (2021). Brief communication: new evidence further constraining Tibetan ice core chronologies to the Holocene. Cryosphere, 15(4), 2109-2114. https://doi.org/10.5194/tc-15-2109-2021 |
| Mapping the age of ice of Gauligletscher combining surface radionuclide contamination and ice flow modeling
Jouvet, G., Röllin, S., Sahli, H., Corcho, J., Gnägi, L., Compagno, L., … Funk, M. (2020). Mapping the age of ice of Gauligletscher combining surface radionuclide contamination and ice flow modeling. Cryosphere, 14(11), 4233-4251. https://doi.org/10.5194/tc-14-4233-2020 |
| Tracing devastating fires in Portugal to a snow archive in the Swiss Alps: a case study
Osmont, D., Brugger, S., Gilgen, A., Weber, H., Sigl, M., Modini, R. L., … Schwikowski, M. (2020). Tracing devastating fires in Portugal to a snow archive in the Swiss Alps: a case study. Cryosphere, 14(11), 3731-3745. https://doi.org/10.5194/tc-14-3731-2020 |
| Apparent discrepancy of Tibetan ice core <em>δ</em><sup>18</sup>O records may be attributed to misinterpretation of chronology
Hou, S., Zhang, W., Pang, H., Wu, S. Y., Jenk, T. M., Schwikowski, M., & Wang, Y. (2019). Apparent discrepancy of Tibetan ice core δ18O records may be attributed to misinterpretation of chronology. Cryosphere, 13(6), 1743-1752. https://doi.org/10.5194/tc-13-1743-2019 |
| Age ranges of the Tibetan ice cores with emphasis on the Chongce ice cores, western Kunlun Mountains
Hou, S., Jenk, T. M., Zhang, W., Wang, C., Wu, S., Wang, Y., … Schwikowski, M. (2018). Age ranges of the Tibetan ice cores with emphasis on the Chongce ice cores, western Kunlun Mountains. Cryosphere, 12(7), 2341-2348. https://doi.org/10.5194/tc-12-2341-2018 |
| 19th century glacier retreat in the Alps preceded the emergence of industrial black carbon deposition on high-alpine glaciers
Sigl, M., Abram, N. J., Gabrieli, J., Jenk, T. M., Osmont, D., & Schwikowski, M. (2018). 19th century glacier retreat in the Alps preceded the emergence of industrial black carbon deposition on high-alpine glaciers. Cryosphere, 12(10), 3311-3331. https://doi.org/10.5194/tc-12-3311-2018 |
| Variability of sea salts in ice and firn cores from Fimbul Ice Shelf, Dronning Maud Land, Antarctica
Vega, C. P., Isaksson, E., Schlosser, E., Divine, D., Martma, T., Mulvaney, R., … Schwikowski-Gigar, M. (2018). Variability of sea salts in ice and firn cores from Fimbul Ice Shelf, Dronning Maud Land, Antarctica. Cryosphere, 12(5), 1681-1697. https://doi.org/10.5194/tc-12-1681-2018 |