Active Filters

  • (-) Journals = Cryosphere
Search Results 1 - 20 of 32
Select Page
Temporal markers in a temperate ice core: insights from <sup>3</sup>H and <sup>137</sup>Cs profiles from the Adamello Glacier
Di Stefano, E., Baccolo, G., Clemenza, M., Delmonte, B., Fiorini, D., Garzonio, R., … Maggi, V. (2024). Temporal markers in a temperate ice core: insights from 3H and 137Cs profiles from the Adamello Glacier. Cryosphere, 18(6), 2865-2874. https://doi.org/10.5194/tc-18-2865-2024
Fifty years of firn evolution on Grigoriev ice cap, Tien Shan, Kyrgyzstan
MacHguth, H., Eichler, A., Schwikowski, M., Brütsch, S., Mattea, E., Kutuzov, S., … Kronenberg, M. (2024). Fifty years of firn evolution on Grigoriev ice cap, Tien Shan, Kyrgyzstan. Cryosphere, 18(4), 1633-1646. https://doi.org/10.5194/tc-18-1633-2024
Review article: melt-affected ice cores for polar research in a warming world
Moser, D. E., Thomas, E. R., Nehrbass-Ahles, C., Eichler, A., & Wolff, E. (2024). Review article: melt-affected ice cores for polar research in a warming world. Cryosphere, 18(6), 2691-2718. https://doi.org/10.5194/tc-18-2691-2024
Climate change is rapidly deteriorating the climatic signal in Svalbard glaciers
Spolaor, A., Scoto, F., Larose, C., Barbaro, E., Burgay, F., Bjorkman, M. P., … Gallet, J. C. (2024). Climate change is rapidly deteriorating the climatic signal in Svalbard glaciers. Cryosphere, 18(1), 307-320. https://doi.org/10.5194/tc-18-307-2024
200-year ice core bromine reconstruction at Dome C (Antarctica): observational and modelling results
Burgay, F., Fernández, R. P., Segato, D., Turetta, C., Blaszczak-Boxe, C. S., Rhodes, R. H., … Spolaor, A. (2023). 200-year ice core bromine reconstruction at Dome C (Antarctica): observational and modelling results. Cryosphere, 17(1), 391-405. https://doi.org/10.5194/tc-17-391-2023
Consistent histories of anthropogenic western European air pollution preserved in different Alpine ice cores
Eichler, A., Legrand, M., Jenk, T. M., Preunkert, S., Andersson, C., Eckhardt, S., … Schwikowski, M. (2023). Consistent histories of anthropogenic western European air pollution preserved in different Alpine ice cores. Cryosphere, 17(5), 2119-2137. https://doi.org/10.5194/tc-17-2119-2023
Early Holocene ice on the Begguya plateau (Mt. Hunter, Alaska) revealed by ice core <sup>14</sup>C age constraints
Fang, L., Jenk, T. M., Winski, D., Kreutz, K., Brooks, H. L., Erwin, E., … Schwikowski, M. (2023). Early Holocene ice on the Begguya plateau (Mt. Hunter, Alaska) revealed by ice core 14C age constraints. Cryosphere, 17(9), 4007-4020. https://doi.org/10.5194/tc-17-4007-2023
Detection of ice core particles via deep neural networks
Maffezzoli, N., Cook, E., Van Der Bilt, W. G. M., Storen, E. N., Festi, D., Muthreich, F., … Barbante, C. (2023). Detection of ice core particles via deep neural networks. Cryosphere, 17(2), 539-565. https://doi.org/10.5194/tc-17-539-2023
A quantitative method of resolving annual precipitation for the past millennia from Tibetan ice cores
Zhang, W., Hou, S., Wu, S. Y., Pang, H., Sneed, S. B., Korotkikh, E. V., … Schwikowski, M. (2022). A quantitative method of resolving annual precipitation for the past millennia from Tibetan ice cores. Cryosphere, 16(5), 1997-2008. https://doi.org/10.5194/tc-16-1997-2022
Interfacial supercooling and the precipitation of hydrohalite in frozen NaCl solutions as seen by X-ray absorption spectroscopy
Bartels-Rausch, T., Kong, X., Orlando, F., Artiglia, L., Waldner, A., Huthwelker, T., & Ammann, M. (2021). Interfacial supercooling and the precipitation of hydrohalite in frozen NaCl solutions as seen by X-ray absorption spectroscopy. Cryosphere, 15(4), 2001-2020. https://doi.org/10.5194/tc-15-2001-2021
Radiocarbon dating of alpine ice cores with the dissolved organic carbon (DOC) fraction
Fang, L., Jenk, T. M., Singer, T., Hou, S., & Schwikowski, M. (2021). Radiocarbon dating of alpine ice cores with the dissolved organic carbon (DOC) fraction. Cryosphere, 15(3), 1537-1550. https://doi.org/10.5194/tc-15-1537-2021
Significant mass loss in the accumulation area of the Adamello glacier indicated by the chronology of a 46 m ice core
Festi, D., Schwikowski, M., Maggi, V., Oeggl, K., & Jenk, T. M. (2021). Significant mass loss in the accumulation area of the Adamello glacier indicated by the chronology of a 46 m ice core. Cryosphere, 15(8), 4135-4143. https://doi.org/10.5194/tc-15-4135-2021
Crystallographic analysis of temperate ice on Rhonegletscher, Swiss Alps
Hellmann, S., Kerch, J., Weikusat, I., Bauder, A., Grab, M., Jouvet, G., … Maurer, H. (2021). Crystallographic analysis of temperate ice on Rhonegletscher, Swiss Alps. Cryosphere, 15(2), 677-694. https://doi.org/10.5194/tc-15-677-2021
Brief communication: new evidence further constraining Tibetan ice core chronologies to the Holocene
Hou, S., Zhang, W., Fang, L., Jenk, T. M., Wu, S., Pang, H., & Schwikowski, M. (2021). Brief communication: new evidence further constraining Tibetan ice core chronologies to the Holocene. Cryosphere, 15(4), 2109-2114. https://doi.org/10.5194/tc-15-2109-2021
Mapping the age of ice of Gauligletscher combining surface radionuclide contamination and ice flow modeling
Jouvet, G., Röllin, S., Sahli, H., Corcho, J., Gnägi, L., Compagno, L., … Funk, M. (2020). Mapping the age of ice of Gauligletscher combining surface radionuclide contamination and ice flow modeling. Cryosphere, 14(11), 4233-4251. https://doi.org/10.5194/tc-14-4233-2020
Tracing devastating fires in Portugal to a snow archive in the Swiss Alps: a case study
Osmont, D., Brugger, S., Gilgen, A., Weber, H., Sigl, M., Modini, R. L., … Schwikowski, M. (2020). Tracing devastating fires in Portugal to a snow archive in the Swiss Alps: a case study. Cryosphere, 14(11), 3731-3745. https://doi.org/10.5194/tc-14-3731-2020
Apparent discrepancy of Tibetan ice core &lt;em&gt;δ&lt;/em&gt;&lt;sup&gt;18&lt;/sup&gt;O records may be attributed to misinterpretation of chronology
Hou, S., Zhang, W., Pang, H., Wu, S. Y., Jenk, T. M., Schwikowski, M., & Wang, Y. (2019). Apparent discrepancy of Tibetan ice core δ18O records may be attributed to misinterpretation of chronology. Cryosphere, 13(6), 1743-1752. https://doi.org/10.5194/tc-13-1743-2019
Age ranges of the Tibetan ice cores with emphasis on the Chongce ice cores, western Kunlun Mountains
Hou, S., Jenk, T. M., Zhang, W., Wang, C., Wu, S., Wang, Y., … Schwikowski, M. (2018). Age ranges of the Tibetan ice cores with emphasis on the Chongce ice cores, western Kunlun Mountains. Cryosphere, 12(7), 2341-2348. https://doi.org/10.5194/tc-12-2341-2018
19th century glacier retreat in the Alps preceded the emergence of industrial black carbon deposition on high-alpine glaciers
Sigl, M., Abram, N. J., Gabrieli, J., Jenk, T. M., Osmont, D., & Schwikowski, M. (2018). 19th century glacier retreat in the Alps preceded the emergence of industrial black carbon deposition on high-alpine glaciers. Cryosphere, 12(10), 3311-3331. https://doi.org/10.5194/tc-12-3311-2018
Variability of sea salts in ice and firn cores from Fimbul Ice Shelf, Dronning Maud Land, Antarctica
Vega, C. P., Isaksson, E., Schlosser, E., Divine, D., Martma, T., Mulvaney, R., … Schwikowski-Gigar, M. (2018). Variability of sea salts in ice and firn cores from Fimbul Ice Shelf, Dronning Maud Land, Antarctica. Cryosphere, 12(5), 1681-1697. https://doi.org/10.5194/tc-12-1681-2018