| Investigation of Li accumulations in LLZO based solid state batteries via <em>operando</em> neutron imaging and <em>ex-situ</em> correlative structural and chemical analysis
Cressa, L., Boillat, P., Gerard, M., Sun, Y., Sharma, S., De Castro, O., … Eswara, S. (2024). Investigation of Li accumulations in LLZO based solid state batteries via operando neutron imaging and ex-situ correlative structural and chemical analysis. Electrochimica Acta, 494, 144397 (7 pp.). https://doi.org/10.1016/j.electacta.2024.144397 |
| Transient behavior of liquid water distribution in a lung-inspired PEM fuel cell
Cabello González, G. M., Iranzo, A., Boillat, P., & Rosa, F. (2023). Transient behavior of liquid water distribution in a lung-inspired PEM fuel cell. Electrochimica Acta, 472, 143414 (9 pp.). https://doi.org/10.1016/j.electacta.2023.143414 |
| Potentiostatic lithium plating as a fast method for electrolyte evaluation in lithium metal batteries
Winter, E., Schmidt, T. J., & Trabesinger, S. (2023). Potentiostatic lithium plating as a fast method for electrolyte evaluation in lithium metal batteries. Electrochimica Acta, 439, 141547 (13 pp.). https://doi.org/10.1016/j.electacta.2022.141547 |
| Effect of aggregate size and film quality on the electrochemical properties of non-noble metal catalysts in rotating ring disk electrode measurements
Ünsal, S., Schmidt, T. J., & Herranz, J. (2023). Effect of aggregate size and film quality on the electrochemical properties of non-noble metal catalysts in rotating ring disk electrode measurements. Electrochimica Acta, 445, 142024 (9 pp.). https://doi.org/10.1016/j.electacta.2023.142024 |
| Understanding the performance losses and “invasiveness” of<em> in situ</em> characterization steps during carbon corrosion experiments in polymer electrolyte membrane fuel cells
Du, F., Dao, T. A., Bauer, A., Obermaier, M., Schmidt, T. J., & Orfanidi, A. (2022). Understanding the performance losses and “invasiveness” of in situ characterization steps during carbon corrosion experiments in polymer electrolyte membrane fuel cells. Electrochimica Acta, 402, 139537 (13 pp.). https://doi.org/10.1016/j.electacta.2021.139537 |
| Physics-based 0D-U-I-SoC cell performance model for aqueous organic redox flow batteries
Mourouga, G., Schaerer, R. P., Yang, X., Janoschka, T., Schmidt, T. J., & Schumacher, J. O. (2022). Physics-based 0D-U-I-SoC cell performance model for aqueous organic redox flow batteries. Electrochimica Acta, 415, 140185 (18 pp.). https://doi.org/10.1016/j.electacta.2022.140185 |
| Operando neutron imaging study of a commercial Li-ion battery at variable charge-discharge current densities
Nazer, N. S., Strobl, M., Kaestner, A., Vie, P. J. S., & Yartys, V. A. (2022). Operando neutron imaging study of a commercial Li-ion battery at variable charge-discharge current densities. Electrochimica Acta, 427, 140793 (10 pp.). https://doi.org/10.1016/j.electacta.2022.140793 |
| NASICON-type Li<sub>0.5</sub>M<sub>0.5</sub>Ti<sub>1.5</sub>Fe<sub>0.5</sub>(PO<sub>4</sub>)<sub>3</sub> (M = Mn, Co, Mg) phosphates as electrode materials for lithium-ion batteries
Elbouazzaoui, K., Srout, M., Saadoune, I., Bih, L., Ben Youcef, H., Dahbi, M., & Mansori, M. (2021). NASICON-type Li0.5M0.5Ti1.5Fe0.5(PO4)3 (M = Mn, Co, Mg) phosphates as electrode materials for lithium-ion batteries. Electrochimica Acta, 399, 139438 (12 pp.). https://doi.org/10.1016/j.electacta.2021.139438 |
| Insight into elevated temperature and thin membrane application for high efficiency in polymer electrolyte water electrolysis
Garbe, S., Futter, J., Schmidt, T. J., & Gubler, L. (2021). Insight into elevated temperature and thin membrane application for high efficiency in polymer electrolyte water electrolysis. Electrochimica Acta, 377, 138046 (12 pp.). https://doi.org/10.1016/j.electacta.2021.138046 |
| Performance-limiting factors of graphite in sulfide-based all-solid-state lithium-ion batteries
Höltschi, L., Borca, C. N., Huthwelker, T., Marone, F., Schlepütz, C. M., Pelé, V., … Novák, P. (2021). Performance-limiting factors of graphite in sulfide-based all-solid-state lithium-ion batteries. Electrochimica Acta, 389, 138735 (10 pp.). https://doi.org/10.1016/j.electacta.2021.138735 |
| Impacts of fluorinated phosphate additive on interface stabilization of 4.6 V battery cathode
Kim, J., Pham, H. Q., Chung, G. J., Hwang, E. H., Kwon, Y. G., & Song, S. W. (2021). Impacts of fluorinated phosphate additive on interface stabilization of 4.6 V battery cathode. Electrochimica Acta, 367, 137527 (10 pp.). https://doi.org/10.1016/j.electacta.2020.137527 |
| Synergistic effects in oxygen evolution activity of mixed iridium-ruthenium pyrochlores
Pittkowski, R. K., Abbott, D. F., Nebel, R., Divanis, S., Fabbri, E., Castelli, I. E., … Krtil, P. (2021). Synergistic effects in oxygen evolution activity of mixed iridium-ruthenium pyrochlores. Electrochimica Acta, 366, 137327 (11 pp.). https://doi.org/10.1016/j.electacta.2020.137327 |
| Electrochemistry and morphology of graphite negative electrodes containing silicon as capacity-enhancing electrode additive
Jeschull, F., Surace, Y., Zürcher, S., Spahr, M. E., Novák, P., & Trabesinger, S. (2019). Electrochemistry and morphology of graphite negative electrodes containing silicon as capacity-enhancing electrode additive. Electrochimica Acta, 320, 134602 (12 pp.). https://doi.org/10.1016/j.electacta.2019.134602 |
| Solid oxide fuel cells with proton-conducting La<sub>0.99</sub>Ca<sub>0.01</sub>NbO<sub>4</sub> electrolyte
Bi, L., Fabbri, E., & Traversa, E. (2018). Solid oxide fuel cells with proton-conducting La0.99Ca0.01NbO4 electrolyte. Electrochimica Acta, 260, 748-754. https://doi.org/10.1016/j.electacta.2017.12.030 |
| High-performance polycrystalline RuO<sub>x</sub> cathodes for thin film Li-ion batteries
Perego, D., Heng, J. S. T., Wang, X., Shao-Horn, Y., & Thompson, C. V. (2018). High-performance polycrystalline RuOx cathodes for thin film Li-ion batteries. Electrochimica Acta, 283, 228-233. https://doi.org/10.1016/j.electacta.2018.06.172 |
| Comparing the kinetic activation energy of the oxygen evolution and reduction reactions
Suermann, M., Schmidt, T. J., & Büchi, F. N. (2018). Comparing the kinetic activation energy of the oxygen evolution and reduction reactions. Electrochimica Acta, 281, 466-471. https://doi.org/10.1016/j.electacta.2018.05.150 |
| Electrochemical impedance spectroscopy of a Li-S battery: part 1. Influence of the electrode and electrolyte compositions on the impedance of symmetric cells
Conder, J., Villevieille, C., Trabesinger, S., Novák, P., Gubler, L., & Bouchet, R. (2017). Electrochemical impedance spectroscopy of a Li-S battery: part 1. Influence of the electrode and electrolyte compositions on the impedance of symmetric cells. Electrochimica Acta, 244, 61-68. https://doi.org/10.1016/j.electacta.2017.05.041 |
| Electrochemical impedance spectroscopy of a Li-S battery: part 2. influence of separator chemistry on the lithium electrode/electrolyte interface
Conder, J., Villevieille, C., Trabesinger, S., Novák, P., Gubler, L., & Bouchet, R. (2017). Electrochemical impedance spectroscopy of a Li-S battery: part 2. influence of separator chemistry on the lithium electrode/electrolyte interface. Electrochimica Acta, 255, 379-390. https://doi.org/10.1016/j.electacta.2017.09.148 |
| Solvation structure in dilute to highly concentrated electrolytes for lithium-ion and sodium-ion batteries
Flores, E., Åvall, G., Jeschke, S., & Johansson, P. (2017). Solvation structure in dilute to highly concentrated electrolytes for lithium-ion and sodium-ion batteries. Electrochimica Acta, 233, 134-141. https://doi.org/10.1016/j.electacta.2017.03.031 |
| Effect of acid washing on the oxygen reduction reaction activity of Pt-Cu aerogel catalysts
Henning, S., Kühn, L., Herranz, J., Nachtegaal, M., Hübner, R., Werheid, M., … Schmidt, T. J. (2017). Effect of acid washing on the oxygen reduction reaction activity of Pt-Cu aerogel catalysts. Electrochimica Acta, 233, 210-217. https://doi.org/10.1016/j.electacta.2017.03.019 |