Active Filters

  • (-) Journals = Journal of Molecular Biology
  • (-) PSI Authors ≠ Kambach, Christian
Search Results 1 - 20 of 211

Pages

  • RSS Feed
Select Page
Light-oxygen-voltage (LOV)-sensing domains: activation mechanism and optogenetic stimulation
Flores-Ibarra, A., Maia, R. N. A., Olasz, B., Church, J. R., Gotthard, G., Schapiro, I., … Nogly, P. (2024). Light-oxygen-voltage (LOV)-sensing domains: activation mechanism and optogenetic stimulation. Journal of Molecular Biology, 436(5), 168356 (19 pp.). https://doi.org/10.1016/j.jmb.2023.168356
Multifaceted N-degron recognition and ubiquitylation by GID/CTLH E3 ligases
Chrustowicz, J., Sherpa, D., Teyra, J., Loke, M. S., Popowicz, G. M., Basquin, J., … Schulman, B. A. (2022). Multifaceted N-degron recognition and ubiquitylation by GID/CTLH E3 ligases. Journal of Molecular Biology, 434(2), 167347 (22 pp.). https://doi.org/10.1016/j.jmb.2021.167347
The crystal structure of the Ca<sup>2+</sup>-ATPase 1 from <em>Listeria monocytogenes </em>reveals a pump primed for dephosphorylation
Basse Hansen, S., Dyla, M., Neumann, C., Quistgaard, E. M. H., Andersen, J. L., Kjaergaard, M., & Nissen, P. (2021). The crystal structure of the Ca2+-ATPase 1 from Listeria monocytogenes reveals a pump primed for dephosphorylation. Journal of Molecular Biology, 433(16), 167015 (11 pp.). https://doi.org/10.1016/j.jmb.2021.167015
Crystal structure of NLRP3 NACHT domain with an inhibitor defines mechanism of inflammasome inhibition
Dekker, C., Mattes, H., Wright, M., Boettcher, A., Hinniger, A., Hughes, N., … Farady, C. J. (2021). Crystal structure of NLRP3 NACHT domain with an inhibitor defines mechanism of inflammasome inhibition. Journal of Molecular Biology, 433(24), 167309 (11 pp.). https://doi.org/10.1016/j.jmb.2021.167309
Systematic engineering of optimized autonomous heavy-chain variable domains
Nilvebrant, J., Ereño-Orbea, J., Gorelik, M., Julian, M. C., Tessier, P. M., Julien, J. P., & Sidhu, S. S. (2021). Systematic engineering of optimized autonomous heavy-chain variable domains. Journal of Molecular Biology, 433(21), 167241 (18 pp.). https://doi.org/10.1016/j.jmb.2021.167241
Reprogramming substrate and catalytic promiscuity of tryptophan prenyltransferases
Ostertag, E., Zheng, L., Broger, K., Stehle, T., Li, S. M., & Zocher, G. (2021). Reprogramming substrate and catalytic promiscuity of tryptophan prenyltransferases. Journal of Molecular Biology, 433(2), 166726 (14 pp.). https://doi.org/10.1016/j.jmb.2020.11.025
Triggering closure of a sialic acid TRAP transporter substrate binding protein through binding of natural or artificial substrates
Peter, M. F., Gebhardt, C., Glaenzer, J., Schneberger, N., de Boer, M., Thomas, G. H., … Hagelueken, G. (2021). Triggering closure of a sialic acid TRAP transporter substrate binding protein through binding of natural or artificial substrates. Journal of Molecular Biology, 433(3), 166756 (15 pp.). https://doi.org/10.1016/j.jmb.2020.166756
The stability landscape of <em>de novo </em>TIM barrels explored by a modular design approach
Romero-Romero, S., Costas, M., Silva Manzano, D. A., Kordes, S., Rojas-Ortega, E., Tapia, C., … Fernández-Velasco, D. A. (2021). The stability landscape of de novo TIM barrels explored by a modular design approach. Journal of Molecular Biology, 433(18), 167153 (20 pp.). https://doi.org/10.1016/j.jmb.2021.167153
Molecular recognition of structurally disordered Pro/Ala-rich sequences (PAS) by antibodies involves an Ala residue at the hot spot of the epitope
Schilz, J., Binder, U., Friedrich, L., Gebauer, M., Lutz, C., Schlapschy, M., … Skerra, A. (2021). Molecular recognition of structurally disordered Pro/Ala-rich sequences (PAS) by antibodies involves an Ala residue at the hot spot of the epitope. Journal of Molecular Biology, 433(18), 167113 (18 pp.). https://doi.org/10.1016/j.jmb.2021.167113
ATP impedes the inhibitory effect of Hsp90 on Aβ&lt;sub&gt;40&lt;/sub&gt; fibrillation
Wang, H., Lallemang, M., Hermann, B., Wallin, C., Loch, R., Blanc, A., … Luo, J. (2021). ATP impedes the inhibitory effect of Hsp90 on Aβ40 fibrillation. Journal of Molecular Biology, 433(2), 166717 (16 pp.). https://doi.org/10.1016/j.jmb.2020.11.016
A transmembrane crenarchaeal mannosyltransferase is involved in &lt;em&gt;N&lt;/em&gt;-glycan biosynthesis and displays an unexpected minimal cellulose-synthase-like fold
Gandini, R., Reichenbach, T., Spadiut, O., Tan, T. C., Kalyani, D. C., & Divne, C. (2020). A transmembrane crenarchaeal mannosyltransferase is involved in N-glycan biosynthesis and displays an unexpected minimal cellulose-synthase-like fold. Journal of Molecular Biology, 432(16), 4658-4672. https://doi.org/10.1016/j.jmb.2020.06.016
An optogenetic tool for induced protein stabilization based on the &lt;em&gt;Phaeodactylum tricornutum&lt;/em&gt; aureochrome 1a light-oxygen-voltage domain
Hepp, S., Trauth, J., Hasenjäger, S., Bezold, F., Essen, L. O., & Taxis, C. (2020). An optogenetic tool for induced protein stabilization based on the Phaeodactylum tricornutum aureochrome 1a light-oxygen-voltage domain. Journal of Molecular Biology, 432(7), 1880-1900. https://doi.org/10.1016/j.jmb.2020.02.019
The hydride transfer process in NADP-dependent methylene-tetrahydromethanopterin dehydrogenase
Huang, G., Wagner, T., Demmer, U., Warkentin, E., Ermler, U., & Shima, S. (2020). The hydride transfer process in NADP-dependent methylene-tetrahydromethanopterin dehydrogenase. Journal of Molecular Biology, 432(7), 2042-2054. https://doi.org/10.1016/j.jmb.2020.01.042
Intestinal gel-forming mucins polymerize by disulfide-mediated dimerization of D3 domains
Javitt, G., Calvo, M. L. G., Albert, L., Reznik, N., Ilani, T., Diskin, R., & Fass, D. (2019). Intestinal gel-forming mucins polymerize by disulfide-mediated dimerization of D3 domains. Journal of Molecular Biology, 431(19), 3740-3752. https://doi.org/10.1016/j.jmb.2019.07.018
Crystal structure of dihydro-heme &lt;em&gt;d&lt;/em&gt;&lt;sub&gt;1&lt;/sub&gt; dehydrogenase NirN from &lt;em&gt;Pseudomonas aeruginosa&lt;/em&gt; reveals amino acid residues essential for catalysis
Klünemann, T., Preuß, A., Adamczack, J., Rosa, L. F. M., Harnisch, F., Layer, G., & Blankenfeldt, W. (2019). Crystal structure of dihydro-heme d1 dehydrogenase NirN from Pseudomonas aeruginosa reveals amino acid residues essential for catalysis. Journal of Molecular Biology, 431(17), 3246-3260. https://doi.org/10.1016/j.jmb.2019.05.046
Structure and function of the branched receptor-binding complex of bacteriophage CBA120
Plattner, M., Shneider, M. M., Arbatsky, N. P., Shashkov, A. S., Chizhov, A. O., Nazarov, S., … Leiman, P. G. (2019). Structure and function of the branched receptor-binding complex of bacteriophage CBA120. Journal of Molecular Biology, 431(19), 3718-3739. https://doi.org/10.1016/j.jmb.2019.07.022
Mapping the allosteric communication network of aminodeoxychorismate synthase
Semmelmann, F., Straub, K., Nazet, J., Rajendran, C., Merkl, R., & Sterner, R. (2019). Mapping the allosteric communication network of aminodeoxychorismate synthase. Journal of Molecular Biology, 431(15), 2718-2728. https://doi.org/10.1016/j.jmb.2019.05.021
Pyruvate kinase regulates the pentose-phosphate pathway in response to hypoxia in &lt;em&gt;Mycobacterium tuberculosis&lt;/em&gt;
Zhong, W., Guo, J., Cui, L., Chionh, Y. H., Li, K., El Sahili, A., … Dedon, P. C. (2019). Pyruvate kinase regulates the pentose-phosphate pathway in response to hypoxia in Mycobacterium tuberculosis. Journal of Molecular Biology, 431(19), 3690-3705. https://doi.org/10.1016/j.jmb.2019.07.033
Evolutionary morphing of tryptophan synthase: functional mechanisms for the enzymatic channeling of indole
Fleming, J. R., Schupfner, M., Busch, F., Baslé, A., Ehrmann, A., Sterner, R., & Mayans, O. (2018). Evolutionary morphing of tryptophan synthase: functional mechanisms for the enzymatic channeling of indole. Journal of Molecular Biology, 430(24), 5066-5079. https://doi.org/10.1016/j.jmb.2018.10.013
Site-specific disulfide crosslinked nucleosomes with enhanced stability
Frouws, T. D., Barth, P. D., & Richmond, T. J. (2018). Site-specific disulfide crosslinked nucleosomes with enhanced stability. Journal of Molecular Biology, 430(1), 45-57. https://doi.org/10.1016/j.jmb.2017.10.029
 

Pages