Active Filters

  • (-) Journals = Nanoscale
  • (-) PSI Laboratories ≠ Bioenergy and Catalysis LBK
Search Results 1 - 20 of 41
Select Page
CVD of MoS<sub>2</sub> single layer flakes using Na<sub>2</sub>MoO<sub>4</sub> - impact of oxygen and temperature-time-profile
Kalt, R. A., Arcifa, A., Wäckerlin, C., & Stemmer, A. (2023). CVD of MoS2 single layer flakes using Na2MoO4 - impact of oxygen and temperature-time-profile. Nanoscale, 15(46), 18871-18882. https://doi.org/10.1039/d3nr03907b
Sub-4 nm mapping of donor-acceptor organic semiconductor nanoparticle composition
Persson, I., Laval, H., Chambon, S., Bonfante, G., Hirakawa, K., Wantz, G., … Holmes, N. P. (2023). Sub-4 nm mapping of donor-acceptor organic semiconductor nanoparticle composition. Nanoscale, 15(13), 6126-6142. https://doi.org/10.1039/D3NR00839H
Template-free generation and integration of functional 1D magnetic nanostructures
Sedrpooshan, M., Bulbucan, C., Ternero, P., Maltoni, P., Preger, C., Finizio, S., … Westerström, R. (2023). Template-free generation and integration of functional 1D magnetic nanostructures. Nanoscale, 15(45), 18500-18510. https://doi.org/10.1039/d3nr03878e
How do interfaces alter the dynamics of supercooled water?
Gasparotto, P., Fitzner, M., Cox, S. J., Sosso, G. C., & Michaelides, A. (2022). How do interfaces alter the dynamics of supercooled water? Nanoscale, 14(11), 4254-4262. https://doi.org/10.1039/d2nr00387b
Tailoring magnetic anisotropy by graphene-induced selective skyhook effect on 4f-metals
Herman, A., Kraus, S., Tsukamoto, S., Spieker, L., Caciuc, V., Lojewski, T., … Wende, H. (2022). Tailoring magnetic anisotropy by graphene-induced selective skyhook effect on 4f-metals. Nanoscale, 14(20), 7682-7691. https://doi.org/10.1039/d2nr01458k
Metamagnetic transition and a loss of magnetic hysteresis caused by electron trapping in monolayers of single-molecule magnet Tb<sub>2</sub>@C<sub>79</sub>N
Koutsouflakis, E., Krylov, D., Bachellier, N., Sostina, D., Dubrovin, V., Liu, F., … Popov, A. A. (2022). Metamagnetic transition and a loss of magnetic hysteresis caused by electron trapping in monolayers of single-molecule magnet Tb2@C79N. Nanoscale, 14(27), 9877-9892. https://doi.org/10.1039/d1nr08475e
In operando charge transport imaging of atomically thin dopant nanostructures in silicon
Kölker, A., Gramse, G., Stock, T. J. Z., Aeppli, G., & Curson, N. J. (2022). In operando charge transport imaging of atomically thin dopant nanostructures in silicon. Nanoscale, 14(17), 6437-6448. https://doi.org/10.1039/d1nr08381c
Green chemistry and first-principles theory enhance catalysis: synthesis and 6-fold catalytic activity increase of sub-5 nm Pd and Pt@Pd nanocubes
Mastronardi, V., Kim, J., Veronesi, M., Pomili, T., Berti, F., Udayan, G., … Moglianetti, M. (2022). Green chemistry and first-principles theory enhance catalysis: synthesis and 6-fold catalytic activity increase of sub-5 nm Pd and Pt@Pd nanocubes. Nanoscale, 14(28), 10155-10168. https://doi.org/10.1039/d2nr02278h
A modern look at a medieval bilayer metal leaf: nanotomography of Zwischgold
Wu, Q., Soppa, K., Müller, E., Müller, J., Odstrcil, M., Tsai, E. H. R., … Watts, B. (2022). A modern look at a medieval bilayer metal leaf: nanotomography of Zwischgold. Nanoscale, 14(40), 15165-15180. https://doi.org/10.1039/D2NR03367D
<em>In situ</em> investigation of temperature induced agglomeration in non-polar magnetic nanoparticle dispersions by small angle X-ray scattering
Appel, C., Kuttich, B., Kraus, T., & Stühn, B. (2021). In situ investigation of temperature induced agglomeration in non-polar magnetic nanoparticle dispersions by small angle X-ray scattering. Nanoscale, 13(14), 6916-6920. https://doi.org/10.1039/d0nr08434d
Large exchange bias in Cr substituted Fe<sub>3</sub>O<sub>4</sub> nanoparticles with FeO subdomains
Bulbucan, C., Preger, C., Kostanyan, A., Jensen, K. M. Ø., Kokkonen, E., Piamonteze, C., … Westerström, R. (2021). Large exchange bias in Cr substituted Fe3O4 nanoparticles with FeO subdomains. Nanoscale, 13(37), 15844-15852. https://doi.org/10.1039/d1nr04614d
Mechanism of magnetization reduction in iron oxide nanoparticles
Köhler, T., Feoktystov, A., Petracic, O., Kentzinger, E., Bhatnagar-Schöffmann, T., Feygenson, M., … Brückel, T. (2021). Mechanism of magnetization reduction in iron oxide nanoparticles. Nanoscale, 13(14), 6965-6976. https://doi.org/10.1039/d0nr08615k
Universal direct patterning of colloidal quantum dots by (extreme) ultraviolet and electron beam lithography
Dieleman, C. D., Ding, W., Wu, L., Thakur, N., Bespalov, I., Daiber, B., … Ehrler, B. (2020). Universal direct patterning of colloidal quantum dots by (extreme) ultraviolet and electron beam lithography. Nanoscale, 12(20), 11306-11316. https://doi.org/10.1039/d0nr01077d
The role of pre-nucleation clusters on the crystallization of gold nanoparticles
Ramamoorthy, R. K., Yildirim, E., Barba, E., Roblin, P., Vargas, J. A., Lacroix, L. M., … Viau, G. (2020). The role of pre-nucleation clusters on the crystallization of gold nanoparticles. Nanoscale, 12(30), 16173-16188. https://doi.org/10.1039/D0NR03486J
&lt;em&gt;In situ&lt;/em&gt; speciation and spatial mapping of Zn products during pulsed laser ablation in liquids (PLAL) by combined synchrotron methods
Reich, S., Göttlicher, J., Ziefuss, A., Streubel, R., Letzel, A., Menzel, A., … Plech, A. (2020). In situ speciation and spatial mapping of Zn products during pulsed laser ablation in liquids (PLAL) by combined synchrotron methods. Nanoscale, 12(26), 14011-14020. https://doi.org/10.1039/d0nr01500h
Elevated effective dimension in tree-like nanomagnetic Cayley structures
Saccone, M., Hofhuis, K., Bracher, D., Kleibert, A., van Dijken, S., & Farhan, A. (2020). Elevated effective dimension in tree-like nanomagnetic Cayley structures. Nanoscale, 12(1), 189-194. https://doi.org/10.1039/C9NR07510K
Homogeneous nucleation of Li&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;2&lt;/sub&gt; under Li-O&lt;sub&gt;2&lt;/sub&gt; battery discharge
Zakharchenko, T. K., Sergeev, A. V., Bashkirov, A. D., Neklyudova, P., Cervellino, A., Itkis, D. M., & Yashina, L. V. (2020). Homogeneous nucleation of Li2O2 under Li-O2 battery discharge. Nanoscale, 12(7), 4591-4601. https://doi.org/10.1039/c9nr08493b
Watching nanostructure growth: kinetically controlled diffusion and condensation of Xe in a surface metal organic network
Ahsan, A., Fatemeh Mousavi, S., Nijs, T., Nowakowska, S., Popova, O., Wäckerlin, A., … Jung, T. A. (2019). Watching nanostructure growth: kinetically controlled diffusion and condensation of Xe in a surface metal organic network. Nanoscale, 11(11), 4895-4903. https://doi.org/10.1039/c8nr09163c
Towards the surface hydroxyl species in CeO&lt;sub&gt;2&lt;/sub&gt; nanoparticles
Plakhova, T. V., Romanchuk, A. Y., Butorin, S. M., Konyukhova, A. D., Egorov, A. V., Shiryaev, A. A., … Kvashnina, K. O. (2019). Towards the surface hydroxyl species in CeO2 nanoparticles. Nanoscale, 11(39), 18142-18149. https://doi.org/10.1039/C9NR06032D
Early appearance of crystalline nanoparticles in pulsed laser ablation in liquids dynamics
Reich, S., Letzel, A., Menzel, A., Kretzschmar, N., Gökce, B., Barcikowski, S., & Plech, A. (2019). Early appearance of crystalline nanoparticles in pulsed laser ablation in liquids dynamics. Nanoscale, 11(14), 6962-6969. https://doi.org/10.1039/C9NR01203F