Active Filters

  • (-) Journals = Nature Catalysis
Search Results 1 - 20 of 26
Select Page
Localized thermal levering events drive spontaneous kinetic oscillations during CO oxidation on Rh/Al<sub>2</sub>O<sub>3</sub>
Decarolis, D., Panchal, M., Quesne, M., Mohammed, K., Xu, S., Isaacs, M., … Wells, P. P. (2024). Localized thermal levering events drive spontaneous kinetic oscillations during CO oxidation on Rh/Al2O3. Nature Catalysis, 7, 829-837. https://doi.org/10.1038/s41929-024-01181-w
Atomically dispersed ruthenium hydride on beta zeolite as catalysts for the isomerization of muconates
Khalil, I., Rigamonti, M. G., Janssens, K., Bugaev, A., Arenas Esteban, D., Robijns, S., … Dusselier, M. (2024). Atomically dispersed ruthenium hydride on beta zeolite as catalysts for the isomerization of muconates. Nature Catalysis, 7, 921-933. https://doi.org/10.1038/s41929-024-01205-5
Identifying and avoiding dead ends in the characterization of heterogeneous catalysts at the gas–solid interface
Beck, A., Paunović, V., & van Bokhoven, J. A. (2023). Identifying and avoiding dead ends in the characterization of heterogeneous catalysts at the gas–solid interface. Nature Catalysis, 6, 873-884. https://doi.org/10.1038/s41929-023-01027-x
Recent trends, current challenges and future prospects for syngas-free methane partial oxidation
Blankenship, A., Artsiusheuski, M., Sushkevich, V., & van Bokhoven, J. A. (2023). Recent trends, current challenges and future prospects for syngas-free methane partial oxidation. Nature Catalysis, 6(9), 748-762. https://doi.org/10.1038/s41929-023-01000-8
Zeolites as equilibrium-shifting agents in shuttle catalysis
Dallenes, J., Wuyts, J., Van Velthoven, N., Krajnc, A., Mali, G., Usoltsev, O. A., … De Vos, D. (2023). Zeolites as equilibrium-shifting agents in shuttle catalysis. Nature Catalysis, 6, 495-505. https://doi.org/10.1038/s41929-023-00967-8
The catalytic role of glutathione transferases in heterologous anthocyanin biosynthesis
Eichenberger, M., Schwander, T., Hüppi, S., Kreuzer, J., Mittl, P. R. E., Peccati, F., … Buller, R. M. (2023). The catalytic role of glutathione transferases in heterologous anthocyanin biosynthesis. Nature Catalysis, 6(10), 927-938. https://doi.org/10.1038/s41929-023-01018-y
Catalytic mechanism for <em>Renilla</em>-type luciferases
Schenkmayerova, A., Toul, M., Pluskal, D., Baatallah, R., Gagnot, G., Pinto, G. P., … Marek, M. (2023). Catalytic mechanism for Renilla-type luciferases. Nature Catalysis, 6(1), 23-38. https://doi.org/10.1038/s41929-022-00895-z
Iron-only Fe-nitrogenase underscores common catalytic principles in biological nitrogen fixation
Trncik, C., Detemple, F., & Einsle, O. (2023). Iron-only Fe-nitrogenase underscores common catalytic principles in biological nitrogen fixation. Nature Catalysis, 6(5), 415-424. https://doi.org/10.1038/s41929-023-00952-1
Photoionization reveals catalytic mechanisms
Bodi, A., Hemberger, P., & Pérez-Ramírez, J. (2022). Photoionization reveals catalytic mechanisms. Nature Catalysis, 5(10), 850-851. https://doi.org/10.1038/s41929-022-00847-7
Elucidation of radical- and oxygenate-driven paths in zeolite-catalysed conversion of methanol and methyl chloride to hydrocarbons
Cesarini, A., Mitchell, S., Zichittella, G., Agrachev, M., Schmid, S. P., Jeschke, G., … Pérez-Ramírez, J. (2022). Elucidation of radical- and oxygenate-driven paths in zeolite-catalysed conversion of methanol and methyl chloride to hydrocarbons. Nature Catalysis, 5, 605-614. https://doi.org/10.1038/s41929-022-00808-0
Steering the structure and selectivity of CO<sub>2</sub> electroreduction catalysts by potential pulses
Timoshenko, J., Bergmann, A., Rettenmaier, C., Herzog, A., Arán-Ais, R. M., Jeon, H. S., … Roldan Cuenya, B. (2022). Steering the structure and selectivity of CO2 electroreduction catalysts by potential pulses. Nature Catalysis, 5(4), 259-267. https://doi.org/10.1038/s41929-022-00760-z
Chemical gradients in automotive Cu-SSZ-13 catalysts for NO<sub><em>x</em></sub> removal revealed by operando X-ray spectrotomography
Becher, J., Ferreira Sanchez, D., Doronkin, D. E., Zengel, D., Motta Meira, D., Pascarelli, S., … Sheppard, T. L. (2021). Chemical gradients in automotive Cu-SSZ-13 catalysts for NOx removal revealed by operando X-ray spectrotomography. Nature Catalysis, 4, 46-53. https://doi.org/10.1038/s41929-020-00552-3
Following the structure of copper-zinc-alumina across the pressure gap in carbon dioxide hydrogenation
Beck, A., Zabilskiy, M., Newton, M. A., Safonova, O., Willinger, M. G., & van Bokhoven, J. A. (2021). Following the structure of copper-zinc-alumina across the pressure gap in carbon dioxide hydrogenation. Nature Catalysis, 4(6), 488-497. https://doi.org/10.1038/s41929-021-00625-x
Design and evolution of chimeric streptavidin for protein-enabled dual gold catalysis
Christoffel, F., Igareta, N. V., Pellizzoni, M. M., Tiessler-Sala, L., Lozhkin, B., Spiess, D. C., … Ward, T. R. (2021). Design and evolution of chimeric streptavidin for protein-enabled dual gold catalysis. Nature Catalysis, 4(8), 643-653. https://doi.org/10.1038/s41929-021-00651-9
Surface molecular imprinting over supported metal catalysts for size-dependent selective hydrogenation reactions
Wu, D., Baaziz, W., Gu, B., Marinova, M., Hernández, W. Y., Zhou, W., … Ordomsky, V. V. (2021). Surface molecular imprinting over supported metal catalysts for size-dependent selective hydrogenation reactions. Nature Catalysis, 4(7), 595-606. https://doi.org/10.1038/s41929-021-00649-3
Engineering the Cu/Mo<sub>2</sub>CT<sub>x</sub> (MXene) interface to drive CO<sub>2</sub> hydrogenation to methanol
Zhou, H., Chen, Z., López, A. V., López, E. D., Lam, E., Tsoukalou, A., … Müller, C. R. (2021). Engineering the Cu/Mo2CTx (MXene) interface to drive CO2 hydrogenation to methanol. Nature Catalysis, 4(10), 860-871. https://doi.org/10.1038/s41929-021-00684-0
Nanostructuring unlocks high performance of platinum single-atom catalysts for stable vinyl chloride production
Kaiser, S. K., Fako, E., Manzocchi, G., Krumeich, F., Hauert, R., Clark, A. H., … Pérez-Ramírez, J. (2020). Nanostructuring unlocks high performance of platinum single-atom catalysts for stable vinyl chloride production. Nature Catalysis, 3(4), 376-385. https://doi.org/10.1038/s41929-020-0431-3
High-valence metals improve oxygen evolution reaction performance by modulating 3&lt;em&gt;d&lt;/em&gt; metal oxidation cycle energetics
Zhang, B., Wang, L., Cao, Z., Kozlov, S. M., García de Arquer, F. P., Dinh, C. T., … Sargent, E. H. (2020). High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nature Catalysis, 3(12), 985-992. https://doi.org/10.1038/s41929-020-00525-6
Structural selectivity of supported Pd nanoparticles for catalytic NH&lt;sub&gt;3&lt;/sub&gt; oxidation resolved using combined operando spectroscopy
Dann, E. K., Gibson, E. K., Blackmore, R. H., Catlow, C. R. A., Collier, P., Chutia, A., … Wells, P. P. (2019). Structural selectivity of supported Pd nanoparticles for catalytic NH3 oxidation resolved using combined operando spectroscopy. Nature Catalysis, 2(2), 157-163. https://doi.org/10.1038/s41929-018-0213-3
The atomic-resolution crystal structure of activated [Fe]-hydrogenase
Huang, G., Wagner, T., Wodrich, M. D., Ataka, K., Bill, E., Ermler, U., … Shima, S. (2019). The atomic-resolution crystal structure of activated [Fe]-hydrogenase. Nature Catalysis, 2(6), 537-543. https://doi.org/10.1038/s41929-019-0289-4