Active Filters

  • (-) Journals = Nature Geoscience
Search Results 1 - 18 of 18
  • RSS Feed
Select Page
Substantial contribution of transported emissions to organic aerosol in Beijing
Daellenbach, K. R., Cai, J., Hakala, S., Dada, L., Yan, C., Du, W., … Kulmala, M. (2024). Substantial contribution of transported emissions to organic aerosol in Beijing. Nature Geoscience, 17(8), 747-754. https://doi.org/10.1038/s41561-024-01493-3
High-altitude glacier archives lost due to climate change-related melting
Huber, C. J., Eichler, A., Mattea, E., Brütsch, S., Jenk, T. M., Gabrieli, J., … Schwikowski, M. (2024). High-altitude glacier archives lost due to climate change-related melting. Nature Geoscience, 17, 110-113. https://doi.org/10.1038/s41561-023-01366-1
Recent human-induced atmospheric drying across Europe unprecedented in the last 400 years
Treydte, K., Liu, L., Padrón, R. S., Martínez-Sancho, E., Babst, F., Frank, D. C., … Loader, N. J. (2024). Recent human-induced atmospheric drying across Europe unprecedented in the last 400 years. Nature Geoscience, 17, 58-65. https://doi.org/10.1038/s41561-023-01335-8
Atmospheric new particle formation from the CERN CLOUD experiment
Kirkby, J., Amorim, A., Baltensperger, U., Carslaw, K. S., Christoudias, T., Curtius, J., … Worsnop, D. R. (2023). Atmospheric new particle formation from the CERN CLOUD experiment. Nature Geoscience, 16(11), 948-957. https://doi.org/10.1038/s41561-023-01305-0
Rapid night-time nanoparticle growth in Delhi driven by biomass-burning emissions
Mishra, S., Tripathi, S. N., Kanawade, V. P., Haslett, S. L., Dada, L., Ciarelli, G., … Prevot, A. S. H. (2023). Rapid night-time nanoparticle growth in Delhi driven by biomass-burning emissions. Nature Geoscience, 16(3), 224-230. https://doi.org/10.1038/s41561-023-01138-x
Substantial contribution of iodine to Arctic ozone destruction
Benavent, N., Mahajan, A. S., Li, Q., Cuevas, C. A., Schmale, J., Angot, H., … Saiz-Lopez, A. (2022). Substantial contribution of iodine to Arctic ozone destruction. Nature Geoscience, 15, 770-773. https://doi.org/10.1038/s41561-022-01018-w
Machine learning reveals climate forcing from aerosols is dominated by increased cloud cover
Chen, Y., Haywood, J., Wang, Y., Malavelle, F., Jordan, G., Partridge, D., … Lohmann, U. (2022). Machine learning reveals climate forcing from aerosols is dominated by increased cloud cover. Nature Geoscience, 15, 609-614. https://doi.org/10.1038/s41561-022-00991-6
Equal abundance of summertime natural and wintertime anthropogenic Arctic organic aerosols
Moschos, V., Dzepina, K., Bhattu, D., Lamkaddam, H., Casotto, R., Daellenbach, K. R., … El Haddad, I. (2022). Equal abundance of summertime natural and wintertime anthropogenic Arctic organic aerosols. Nature Geoscience, 15, 196-202. https://doi.org/10.1038/s41561-021-00891-1
Secondary organic aerosol formed by condensing anthropogenic vapours over China’s megacities
Nie, W., Yan, C., Huang, D. D., Wang, Z., Liu, Y., Qiao, X., … Ding, A. (2022). Secondary organic aerosol formed by condensing anthropogenic vapours over China’s megacities. Nature Geoscience, 15, 255-261. https://doi.org/10.1038/s41561-022-00922-5
Biogenic particles formed in the Himalaya as an important source of free tropospheric aerosols
Bianchi, F., Junninen, H., Bigi, A., Sinclair, V. A., Dada, L., Hoyle, C. R., … Dommen, J. (2021). Biogenic particles formed in the Himalaya as an important source of free tropospheric aerosols. Nature Geoscience, 14, 4-9. https://doi.org/10.1038/s41561-020-00661-5
Reply to: no <sup>182</sup>W evidence for early Moon formation
Thiemens, M. M., Tusch, J., Fonseca, R. O. C., Leitzke, F., Fischer-Gödde, M., Debaille, V., … Münker, C. (2021). Reply to: no 182W evidence for early Moon formation. Nature Geoscience, 14(10), 716-718. https://doi.org/10.1038/s41561-021-00821-1
Early Moon formation inferred from hafnium-tungsten systematics
Thiemens, M. M., Sprung, P., Fonseca, R. O. C., Leitzke, F. P., & Münker, C. (2019). Early Moon formation inferred from hafnium-tungsten systematics. Nature Geoscience, 12(9), 696-700. https://doi.org/10.1038/s41561-019-0398-3
Disproportionately strong climate forcing from extratropical explosive volcanic eruptions
Toohey, M., Krüger, K., Schmidt, H., Timmreck, C., Sigl, M., Stoffel, M., & Wilson, R. (2019). Disproportionately strong climate forcing from extratropical explosive volcanic eruptions. Nature Geoscience, 12(2), 100-107. https://doi.org/10.1038/s41561-018-0286-2
Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD
Büntgen, U., Myglan, V. S., Ljungqvist, F. C., McCormick, M., Di Cosmo, N., Sigl, M., … Kirdyanov, A. V. (2016). Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nature Geoscience, 9(3), 231-236. https://doi.org/10.1038/ngeo2652
Supervolcano eruptions driven by melt buoyancy in large silicic magma chambers
Malfait, W. J., Seifert, R., Petitgirard, S., Perrillat, J. P., Mezouar, M., Ota, T., … Sanchez-Valle, C. (2014). Supervolcano eruptions driven by melt buoyancy in large silicic magma chambers. Nature Geoscience, 7(2), 122-125. https://doi.org/10.1038/ngeo2042
Evidence for arsenic metabolism and cycling by microorganisms 2.7 billion years ago
Sforna, M. C., Philippot, P., Somogyi, A., Van Zuilen, M. A., Medjoubi, K., Schoepp-Cothenet, B., … Visscher, P. T. (2014). Evidence for arsenic metabolism and cycling by microorganisms 2.7 billion years ago. Nature Geoscience, 7(11), 811-815. https://doi.org/10.1038/NGEO2276
Strong inheritance of texture between perovskite and post-perovskite in the D<em>''</em> layer
Dobson, D. P., Miyajima, N., Nestola, F., Alvaro, M., Casati, N., Liebske, C., … Walker, A. M. (2013). Strong inheritance of texture between perovskite and post-perovskite in the D'' layer. Nature Geoscience, 6(7), 575-578. https://doi.org/10.1038/ngeo1844
Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans
Posth, N. R., Hegler, F., Konhauser, K. O., & Kappler, A. (2008). Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans. Nature Geoscience, 1(10), 703-708. https://doi.org/10.1038/ngeo306