Active Filters

  • (-) Journals = Nature Methods
  • (-) Beamlines ≠ cSAXS
Search Results 1 - 17 of 17
  • RSS Feed
Select Page
Engineered HaloTag variants for fluorescence lifetime multiplexing
Frei, M. S., Tarnawski, M., Roberti, M. J., Koch, B., Hiblot, J., & Johnsson, K. (2022). Engineered HaloTag variants for fluorescence lifetime multiplexing. Nature Methods, 19(1), 65-70. https://doi.org/10.1038/s41592-021-01341-x
Automated synapse-level reconstruction of neural circuits in the larval zebrafish brain
Svara, F., Förster, D., Kubo, F., Januszewski, M., dal Maschio, M., Schubert, P. J., … Baier, H. (2022). Automated synapse-level reconstruction of neural circuits in the larval zebrafish brain. Nature Methods, 19, 1357-1366. https://doi.org/10.1038/s41592-022-01621-0
Chemogenetic control of nanobodies
Farrants, H., Tarnawski, M., Müller, T. G., Otsuka, S., Hiblot, J., Koch, B., … Johnsson, K. (2020). Chemogenetic control of nanobodies. Nature Methods, 17(3), 279-282. https://doi.org/10.1038/s41592-020-0746-7
GPCRmd uncovers the dynamics of the 3D-GPCRome
Rodríguez-Espigares, I., Torrens-Fontanals, M., Tiemann, J. K. S., Aranda-García, D., Ramírez-Anguita, J. M., Stepniewski, T. M., … Selent, J. (2020). GPCRmd uncovers the dynamics of the 3D-GPCRome. Nature Methods, 17, 777-787. https://doi.org/10.1038/s41592-020-0884-y
Rational design and implementation of a chemically inducible heterotrimerization system
Wu, H. D., Kikuchi, M., Dagliyan, O., Aragaki, A. K., Nakamura, H., Dokholyan, N. V., … Inoue, T. (2020). Rational design and implementation of a chemically inducible heterotrimerization system. Nature Methods, 17(9), 928-936. https://doi.org/10.1038/s41592-020-0913-x
An online resource for GPCR structure determination and analysis
Munk, C., Mutt, E., Isberg, V., Nikolajsen, L. F., Bibbe, J. M., Flock, T., … Gloriam, D. E. (2019). An online resource for GPCR structure determination and analysis. Nature Methods, 16(2), 151-162. https://doi.org/10.1038/s41592-018-0302-x
Fast and accurate data collection for macromolecular crystallography using the JUNGFRAU detector
Leonarski, F., Redford, S., Mozzanica, A., Lopez-Cuenca, C., Panepucci, E., Nass, K., … Wang, M. (2018). Fast and accurate data collection for macromolecular crystallography using the JUNGFRAU detector. Nature Methods, 15(10), 799-804. https://doi.org/10.1038/s41592-018-0143-7
Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers
Fuller, F. D., Gul, S., Chatterjee, R., Sethe Burgie, E., Young, I. D., Lebrette, H., … Yano, J. (2017). Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers. Nature Methods, 14(4), 443-453. https://doi.org/10.1038/nmeth.4195
High-speed fixed-target serial virus crystallography
Roedig, P., Ginn, H. M., Pakendorf, T., Sutton, G., Harlos, K., Walter, T. S., … Meents, A. (2017). High-speed fixed-target serial virus crystallography. Nature Methods, 14(8), 805-810. https://doi.org/10.1038/nmeth.4335
Cryogenic optical localization provides 3D protein structure data with angstrom resolution
Weisenburger, S., Boening, D., Schomburg, B., Giller, K., Becker, S., Griesinger, C., & Sandoghdar, V. (2017). Cryogenic optical localization provides 3D protein structure data with angstrom resolution. Nature Methods, 14(2), 141-147. https://doi.org/10.1038/nmeth.4141
LOVTRAP: an optogenetic system for photoinduced protein dissociation
Wang, H., Vilela, M., Winkler, A., Tarnawski, M., Schlichting, I., Yumerefendi, H., … Hahn, K. M. (2016). LOVTRAP: an optogenetic system for photoinduced protein dissociation. Nature Methods, 13(9), 755-761. https://doi.org/10.1038/nmeth.3926
Fast native-SAD phasing for routine macromolecular structure determination
Weinert, T., Olieric, V., Waltersperger, S., Panepucci, E., Chen, L., Zhang, H., … Wang, M. (2015). Fast native-SAD phasing for routine macromolecular structure determination. Nature Methods, 12(2), 131-133. https://doi.org/10.1038/nmeth.3211
Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry
Giesen, C., Wang, H. A. O., Schapiro, D., Zivanovic, N., Jacobs, A., Hattendorf, B., … Bodenmiller, B. (2014). Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nature Methods, 11(4), 417-422. https://doi.org/10.1038/nmeth.2869
Exploiting tertiary structure through local folds for crystallographic phasing
Sammito, M., Millán, C., Rodríguez, D. D., de Ilarduya, I. M., Meindl, K., De Marino, I., … Usón, I. (2013). Exploiting tertiary structure through local folds for crystallographic phasing. Nature Methods, 10(11), 1099-1101. https://doi.org/10.1038/nmeth.2644
<em>In vivo</em> protein crystallization opens new routes in structural biology
Koopmann, R., Cupelli, K., Redecke, L., Nass, K., DePonte, D. P., White, T. A., … Duszenko, M. (2012). In vivo protein crystallization opens new routes in structural biology. Nature Methods, 9(3), 259-262. https://doi.org/10.1038/nmeth.1859
Automated unrestricted multigene recombineering for multiprotein complex production
Bieniossek, C., Nie, Y., Frey, D., Olieric, N., Schaffitzel, C., Collinson, I., … Berger, I. (2009). Automated unrestricted multigene recombineering for multiprotein complex production. Nature Methods, 6(6), 447-450. https://doi.org/10.1038/nmeth.1326
Protein complex expression by using multigene baculoviral vectors
Fitzgerald, D. J., Berger, P., Schaffitzel, C., Yamada, K., Richmond, T. J., & Berger, I. (2006). Protein complex expression by using multigene baculoviral vectors. Nature Methods, 3(12), 1021-1032. https://doi.org/10.1038/nmeth983