Active Filters

  • (-) Journals = Nature Nanotechnology
Search Results 1 - 16 of 16
  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Time-resolved imaging of three-dimensional nanoscale magnetization dynamics
Donnelly, C., Finizio, S., Gliga, S., Holler, M., Hrabec, A., Odstrčil, M., … Raabe, J. (2020). Time-resolved imaging of three-dimensional nanoscale magnetization dynamics. Nature Nanotechnology. https://doi.org/10.1038/s41565-020-0649-x
Reversible coordination-induced spin-state switching in complexes on metal surfaces
Köbke, A., Gutzeit, F., Röhricht, F., Schlimm, A., Grunwald, J., Tuczek, F., … Gruber, M. (2020). Reversible coordination-induced spin-state switching in complexes on metal surfaces. Nature Nanotechnology, 15(1), 18-21. https://doi.org/10.1038/s41565-019-0594-8
Soft biomimetic nanoconfinement promotes amorphous water over ice
Salvati Manni, L., Assenza, S., Duss, M., Vallooran, J. J., Juranyi, F., Jurt, S., … Mezzenga, R. (2019). Soft biomimetic nanoconfinement promotes amorphous water over ice. Nature Nanotechnology, 14(6), 609-615. https://doi.org/10.1038/s41565-019-0415-0
Emission and propagation of 1D and 2D spin waves with nanoscale wavelengths in anisotropic spin textures
Sluka, V., Schneider, T., Gallardo, R. A., Kákay, A., Weigand, M., Warnatz, T., … Wintz, S. (2019). Emission and propagation of 1D and 2D spin waves with nanoscale wavelengths in anisotropic spin textures. Nature Nanotechnology, 14(4), 328-333. https://doi.org/10.1038/s41565-019-0383-4
A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling
Chen, Z., Vorobyeva, E., Mitchell, S., Fako, E., Ortuño, M. A., López, N., … Pérez-Ramírez, J. (2018). A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nature Nanotechnology, 13(8), 702-707. https://doi.org/10.1038/s41565-018-0167-2
Poling of an artificial magneto-toroidal crystal
Lehmann, J., Donnelly, C., Derlet, P. M., Heyderman, L. J., & Fiebig, M. (2018). Poling of an artificial magneto-toroidal crystal. Nature Nanotechnology, 14(2), 141-144. https://doi.org/10.1038/s41565-018-0321-x
Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature
Maccariello, D., Legrand, W., Reyren, N., Garcia, K., Bouzehouane, K., Collin, S., … Fert, A. (2018). Electrical detection of single magnetic skyrmions in metallic multilayers at room temperature. Nature Nanotechnology, 13(3), 233-237. https://doi.org/10.1038/s41565-017-0044-4
Discrete Hall resistivity contribution from Néel skyrmions in multilayer nanodiscs
Zeissler, K., Finizio, S., Shahbazi, K., Massey, J., Ma’Mari, F. A., Bracher, D. M., … Marrows, C. H. (2018). Discrete Hall resistivity contribution from Néel skyrmions in multilayer nanodiscs. Nature Nanotechnology, 13(12), 1161-1166. https://doi.org/10.1038/s41565-018-0268-y
Spatially and time-resolved magnetization dynamics driven by spin-orbit torques
Baumgartner, M., Garello, K., Mendil, J., Avci, C. O., Grimaldi, E., Murer, C., … Gambardella, P. (2017). Spatially and time-resolved magnetization dynamics driven by spin-orbit torques. Nature Nanotechnology, 12(10), 980-986. https://doi.org/10.1038/nnano.2017.151
Amyloid fibril systems reduce, stabilize and deliver bioavailable nanosized iron
Shen, Y., Posavec, L., Bolisetty, S., Hilty, F. M., Nyström, G., Kohlbrecher, J., … Mezzenga, R. (2017). Amyloid fibril systems reduce, stabilize and deliver bioavailable nanosized iron. Nature Nanotechnology, 12(7), 642-647. https://doi.org/10.1038/nnano.2017.58
Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature
Moreau-Luchaire, C., Moutafis, C., Reyren, N., Sampaio, J., Vaz, C. A. F., Van Horne, N., … Fert, A. (2016). Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nature Nanotechnology, 11(5), 444-448. https://doi.org/10.1038/nnano.2015.313
Magnetic vortex cores as tunable spin-wave emitters
Wintz, S., Tiberkevich, V., Weigand, M., Raabe, J., Lindner, J., Erbe, A., … Fassbender, J. (2016). Magnetic vortex cores as tunable spin-wave emitters. Nature Nanotechnology, 11(11), 948-953. https://doi.org/10.1038/nnano.2016.117
Graphene nanoribbon heterojunctions
Cai, J., Pignedoli, C. A., Talirz, L., Ruffieux, P., Söde, H., Liang, L., … Fasel, R. (2014). Graphene nanoribbon heterojunctions. Nature Nanotechnology, 9(11), 896-900. https://doi.org/10.1038/nnano.2014.184
Thermal fluctuations in artificial spin ice
Kapaklis, V., Arnalds, U. B., Farhan, A., Chopdekar, R. V., Balan, A., Scholl, A., … Hjörvarsson, B. (2014). Thermal fluctuations in artificial spin ice. Nature Nanotechnology, 9(7), 514-519. https://doi.org/10.1038/nnano.2014.104
Surface-stress sensors for rapid and ultrasensitive detection of active free drugs in human serum
Ndieyira, J. W., Kappeler, N., Logan, S., Cooper, M. A., Abell, C., Mckendry, R. A., & Aeppli, G. (2014). Surface-stress sensors for rapid and ultrasensitive detection of active free drugs in human serum. Nature Nanotechnology, 9(3), 225-232. https://doi.org/10.1038/nnano.2014.33
Molecular beam epitaxy growth of free-standing plane-parallel InAs nanoplates
Aagesen, M., Johnson, E., Sørensen, C. B., Mariager, S. O., Feidenhans'l, R., Spiecker, E., … Lindelof, P. E. (2007). Molecular beam epitaxy growth of free-standing plane-parallel InAs nanoplates. Nature Nanotechnology, 2(12), 761-764. https://doi.org/10.1038/nnano.2007.378