Active Filters

  • (-) Journals = Nature
  • (-) Beamlines = PXIII
Search Results 1 - 20 of 28
Select Page
R-loop formation and conformational activation mechanisms of Cas9
Pacesa, M., Loeff, L., Querques, I., Muckenfuss, L. M., Sawicka, M., & Jinek, M. (2022). R-loop formation and conformational activation mechanisms of Cas9. Nature, 609, 191-196. https://doi.org/10.1038/s41586-022-05114-0
Target site selection and remodelling by type V CRISPR-transposon systems
Querques, I., Schmitz, M., Oberli, S., Chanez, C., & Jinek, M. (2021). Target site selection and remodelling by type V CRISPR-transposon systems. Nature, 599(7885), 497-502. https://doi.org/10.1038/s41586-021-04030-z
The ABC exporter IrtAB imports and reduces mycobacterial siderophores
Arnold, F. M., Weber, M. S., Gonda, I., Gallenito, M. J., Adenau, S., Egloff, P., … Seeger, M. A. (2020). The ABC exporter IrtAB imports and reduces mycobacterial siderophores. Nature, 580(7803), 413-417. https://doi.org/10.1038/s41586-020-2136-9
Structure of ATP citrate lyase and the origin of citrate synthase in the Krebs cycle
Verschueren, K. H. G., Blanchet, C., Felix, J., Dansercoer, A., De Vos, D., Bloch, Y., … Verstraete, K. (2019). Structure of ATP citrate lyase and the origin of citrate synthase in the Krebs cycle. Nature, 568(7753), 571-575. https://doi.org/10.1038/s41586-019-1095-5
Structure of a volume-regulated anion channel of the LRRC8 family
Deneka, D., Sawicka, M., Lam, A. K. M., Paulino, C., & Dutzler, R. (2018). Structure of a volume-regulated anion channel of the LRRC8 family. Nature, 558(7709), 254-259. https://doi.org/10.1038/s41586-018-0134-y
Methicillin-resistant <em>Staphylococcus aureus </em>alters cell wall glycosylation to evade immunity
Gerlach, D., Guo, Y., De Castro, C., Kim, S. H., Schlatterer, K., Xu, F. F., … Peschel, A. (2018). Methicillin-resistant Staphylococcus aureus alters cell wall glycosylation to evade immunity. Nature, 563(7733), 705-709. https://doi.org/10.1038/s41586-018-0730-x
Insights into catalysis and function of phosphoribosyl-linked serine ubiquitination
Kalayil, S., Bhogaraju, S., Bonn, F., Shin, D., Liu, Y., Gan, N., … Dikic, I. (2018). Insights into catalysis and function of phosphoribosyl-linked serine ubiquitination. Nature, 557(7707), 734-738. https://doi.org/10.1038/s41586-018-0145-8
Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases
Herbst, D. A., Jakob, R. P., Zähringer, F., & Maier, T. (2016). Mycocerosic acid synthase exemplifies the architecture of reducing polyketide synthases. Nature, 531(7595), 533-536. https://doi.org/10.1038/nature16993
Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53
Martinez-Zapien, D., Ruiz, F. X., Poirson, J., Mitschler, A., Ramirez, J., Forster, A., … Zanier, K. (2016). Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53. Nature, 529(7587), 541-556. https://doi.org/10.1038/nature16481
Structural basis of lenalidomide-induced CK1α degradation by the CRL4<sup>CRBN</sup> ubiquitin ligase
Petzold, G., Fischer, E. S., & Thomä, N. H. (2016). Structural basis of lenalidomide-induced CK1α degradation by the CRL4CRBN ubiquitin ligase. Nature, 532(7597), 127-130. https://doi.org/10.1038/nature16979
The octahaem MccA is a haem c-copper sulfite reductase
Hermann, B., Kern, M., La Pietra, L., Simon, J., & Einsle, O. (2015). The octahaem MccA is a haem c-copper sulfite reductase. Nature, 520, 706-709. https://doi.org/10.1038/nature14109
RNA degradation paths in a 12-subunit nuclear exosome complex
Makino, D. L., Schuch, B., Stegmann, E., Baumgärtner, M., Basquin, C., & Conti, E. (2015). RNA degradation paths in a 12-subunit nuclear exosome complex. Nature, 524, 54-58. https://doi.org/10.1038/nature14865
Crystal structure of the dynamin tetramer
Reubold, T. F., Faelber, K., Plattner, N., Posor, Y., Ketel, K., Curth, U., … Eschenburg, S. (2015). Crystal structure of the dynamin tetramer. Nature, 525, 404-408. https://doi.org/10.1038/nature14880
Structural insights into the bacterial carbon-phosphorus lyase machinery
Seweryn, P., Van, L. B., Kjeldgaard, M., Russo, C. J., Passmore, L. A., Hove-Jensen, B., … Brodersen, D. E. (2015). Structural insights into the bacterial carbon-phosphorus lyase machinery. Nature, 525, 68-72. https://doi.org/10.1038/nature14683
Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease
Anders, C., Niewoehner, O., Duerst, A., & Jinek, M. (2014). Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature, 513(7519), 569-573. https://doi.org/10.1038/nature13579
Structural basis for recognition of synaptic vesicle protein 2C by botulinum neurotoxin A
Benoit, R. M., Frey, D., Hilbert, M., Kevenaar, J. T., Wieser, M. M., Stirnimann, C. U., … Kammerer, R. A. (2014). Structural basis for recognition of synaptic vesicle protein 2C by botulinum neurotoxin A. Nature, 505(7481), 108-111. https://doi.org/10.1038/nature12732
Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide
Fischer, E. S., Böhm, K., Lydeard, J. R., Yang, H., Stadler, M. B., Cavadini, S., … Thomä, N. H. (2014). Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature, 512(1), 49-53. https://doi.org/10.1038/nature13527
Crystal structure of the human COP9 signalosome
Lingaraju, G. M., Bunker, R. D., Cavadini, S., Hess, D., Hassiepen, U., Renatus, M., … Thomä, N. H. (2014). Crystal structure of the human COP9 signalosome. Nature, 512(7513), 161 (17pp.). https://doi.org/10.1038/nature13566
Structure of the<em> V. cholerae</em> Na<sup>+</sup>-pumping NADH:quinone oxidoreductase
Steuber, J., Vohl, G., Casutt, M. S., Vorburger, T., Diederichs, K., & Fritz, G. (2014). Structure of the V. cholerae Na+-pumping NADH:quinone oxidoreductase. Nature, 516(7529), 62-67. https://doi.org/10.1038/nature14003
Vinylogous chain branching catalysed by a dedicated polyketide synthase module
Bretschneider, T., Heim, J. B., Heine, D., Winkler, R., Busch, B., Kusebauch, B., … Hertweck, C. (2013). Vinylogous chain branching catalysed by a dedicated polyketide synthase module. Nature, 502(7469), 124-128. https://doi.org/10.1038/nature12588