Active Filters

  • (-) Journals = Physical Chemistry Chemical Physics
  • (-) Beamlines ≠ Accelerator
Search Results 1 - 20 of 251

Pages

  • RSS Feed
Select Page
Glycyrrhizic acid aggregates seen from a synthetic surfactant perspective
Fischer, P., & Lutz-Bueno, V. (2024). Glycyrrhizic acid aggregates seen from a synthetic surfactant perspective. Physical Chemistry Chemical Physics, 26(4), 2806-2814. https://doi.org/10.1039/d3cp04835g
Soft X-ray absorption and fragmentation of tin-oxo cage photoresists
Haitjema, J., Castellanos, S., Lugier, O., Bespalov, I., Lindblad, R., Timm, M., … Brouwer, A. M. (2024). Soft X-ray absorption and fragmentation of tin-oxo cage photoresists. Physical Chemistry Chemical Physics, 26(7), 5986-5998. https://doi.org/10.1039/d3cp05428d
The magnetic properties of MAl<sub>4</sub>(OH)<sub>12</sub>SO<sub>4</sub>·3H<sub>2</sub>O with M = Co<sup>2+</sup>, Ni<sup>2+</sup>, and Cu<sup>2+</sup> determined by a combined experimental and computational approach
Andersen, A. B. A., Christiansen, R. T., Holm-Janas, S., Manvell, A. S., Pedersen, K. S., Sheptyakov, D., … Nielsen, U. G. (2023). The magnetic properties of MAl4(OH)12SO4·3H2O with M = Co2+, Ni2+, and Cu2+ determined by a combined experimental and computational approach. Physical Chemistry Chemical Physics, 25(4), 3309-3322. https://doi.org/10.1039/d2cp05362d
Branching ratios in the dissociative photoionization of iodomethane by photoelectron photoion coincidence
Bodi, A., Hafliðason, A., & Kvaran, Á. (2023). Branching ratios in the dissociative photoionization of iodomethane by photoelectron photoion coincidence. Physical Chemistry Chemical Physics, 25(10), 7383-7393. https://doi.org/10.1039/d2cp03339a
Prospects of spectroscopic neutron imaging: optimizing experimental setups in battery electrolyte research
Carreón Ruiz, E. R., Stalder, N., Lee, J., Gubler, L., & Boillat, P. (2023). Prospects of spectroscopic neutron imaging: optimizing experimental setups in battery electrolyte research. Physical Chemistry Chemical Physics, 25(36), 24993-25007. https://doi.org/10.1039/d3cp03434h
Infrared photodissociation spectroscopy of mass-selected [TaO<sub>3</sub>(CO<sub>2</sub>)<em><sub>n</sub></em>]<sup>+</sup> (<em>n</em> = 2-5) complexes in the gas phase
Han, J., Yang, Y., Qiu, B., Liu, P., Wu, X., Wang, G., … Zhou, X. (2023). Infrared photodissociation spectroscopy of mass-selected [TaO3(CO2)n]+ (n = 2-5) complexes in the gas phase. Physical Chemistry Chemical Physics, 25(18), 13198-13208. https://doi.org/10.1039/d3cp01384g
Carrier envelope phase sensitivity of photoelectron circular dichroism
Hanus, V., Kangaparambil, S., Richter, M., Haßfurth, L., Dorner-Kirchner, M., Paulus, G. G., … Zeiler, M. (2023). Carrier envelope phase sensitivity of photoelectron circular dichroism. Physical Chemistry Chemical Physics, 25(6), 4656-4666. https://doi.org/10.1039/D2CP03077B
Threshold photoelectron spectroscopy and dissociative photoionization of benzonitrile
Kamer, J., Schleier, D., Donker, M., Hemberger, P., Bodi, A., & Bouwman, J. (2023). Threshold photoelectron spectroscopy and dissociative photoionization of benzonitrile. Physical Chemistry Chemical Physics, 42(25), 29070-29079. https://doi.org/10.1039/d3cp03977c
Experimental and theoretical insights into the structure and molecular dynamics of 2,3,3',4'-tetramethoxy-<em>trans</em>-stilbene - a chemopreventive agent
Pajzderska, A., Wierzchowski, M., Łażewski, D., Gielara-Korzańska, A., Korzański, A., Popenda, Ł., … Wąsicki, J. (2023). Experimental and theoretical insights into the structure and molecular dynamics of 2,3,3',4'-tetramethoxy-trans-stilbene - a chemopreventive agent. Physical Chemistry Chemical Physics, 25(27), 18481-18494. https://doi.org/10.1039/d3cp01747h
Effect of antifluorite layer on the magnetic order in Eu-based 1111 compounds, EuTAsF (T = Zn, Mn, and Fe)
Plokhikh, I. V., Tsirlin, A. A., Khalyavin, D. D., Fischer, H. E., Shevelkov, A. V., & Pfitzner, A. (2023). Effect of antifluorite layer on the magnetic order in Eu-based 1111 compounds, EuTAsF (T = Zn, Mn, and Fe). Physical Chemistry Chemical Physics, 25(6), 4862 (10 pp.). https://doi.org/10.1039/d2cp04863a
Photoelectron spectroscopic study of 2-naphthylnitrene and its thermal rearrangement to cyanoindenes
Saraswat, M., Portela-Gonzalez, A., Mendez-Vega, E., Karir, G., Sander, W., & Hemberger, P. (2023). Photoelectron spectroscopic study of 2-naphthylnitrene and its thermal rearrangement to cyanoindenes. Physical Chemistry Chemical Physics, 25(45), 31146-31152. https://doi.org/10.1039/d3cp04064j
Threshold photoelectron spectroscopy of trimethylborane and its pyrolysis products
Schleier, D., Gerlach, M., Schaffner, D., Mukhopadhyay, D. P., Hemberger, P., & Fischer, I. (2023). Threshold photoelectron spectroscopy of trimethylborane and its pyrolysis products. Physical Chemistry Chemical Physics, 25(6), 4511-4518. https://doi.org/10.1039/d2cp04513c
Surface species in direct liquid phase synthesis of dimethyl carbonate from methanol and CO<sub>2</sub>: an MCR-ALS augmented ATR-IR study
Signorile, M., Salusso, D., Crocellà, V., Paganini, M. C., Bordiga, S., Bonino, F., & Ferri, D. (2023). Surface species in direct liquid phase synthesis of dimethyl carbonate from methanol and CO2: an MCR-ALS augmented ATR-IR study. Physical Chemistry Chemical Physics, 25(12), 8392-8402. https://doi.org/10.1039/d2cp05800f
Temperature dependent local inhomogeneity and magnetic moments of (Li<sub>1−<em>x</em></sub>Fe<em><sub>x</sub></em>)OHFeSe superconductors
Tomassucci, G., Tortora, L., Pugliese, G. M., Stramaglia, F., Simonelli, L., Marini, C., … Saini, N. L. (2023). Temperature dependent local inhomogeneity and magnetic moments of (Li1−xFex)OHFeSe superconductors. Physical Chemistry Chemical Physics, 25(9), 6684 (9 pp.). https://doi.org/10.1039/d3cp00004d
Does liquid-liquid phase separation impact ice nucleation in mixed polyethylene glycol and ammonium sulfate droplets?
Yao, Y., Alpert, P. A., Zuend, A., & Wang, B. (2023). Does liquid-liquid phase separation impact ice nucleation in mixed polyethylene glycol and ammonium sulfate droplets? Physical Chemistry Chemical Physics, 25(1), 80-95. https://doi.org/10.1039/d2cp04407b
BCC-Cu nanoparticles: from a transient to a stable allotrope by tuning size and reaction conditions
Alfke, J. L., Müller, A., Clark, A. H., Cervellino, A., Plodinec, M., Comas-Vives, A., … Safonova, O. V. (2022). BCC-Cu nanoparticles: from a transient to a stable allotrope by tuning size and reaction conditions. Physical Chemistry Chemical Physics, 24(39), 24429-24438. https://doi.org/10.1039/d2cp03593f
On the effect of metal loading on the reducibility and redox chemistry of ceria supported Pd catalysts
Clark, A. H., Marchbank, H. R., Thompsett, D., Fisher, J. M., Longo, A., Beyer, K. A., … Sankar, G. (2022). On the effect of metal loading on the reducibility and redox chemistry of ceria supported Pd catalysts. Physical Chemistry Chemical Physics, 24(4), 2387-2395. https://doi.org/10.1039/d1cp04654c
Formation of phenylacetylene and benzocyclobutadiene in the <em>ortho</em>-benzyne + acetylene reaction
McCabe, M. N., Hemberger, P., Campisi, D., Broxterman, J. C., Reusch, E., Bodi, A., & Bouwman, J. (2022). Formation of phenylacetylene and benzocyclobutadiene in the ortho-benzyne + acetylene reaction. Physical Chemistry Chemical Physics, 24(3), 1869-1876. https://doi.org/10.1039/d1cp05183k
Unravelling the polyethylenimine mediated non-monotonic stability behaviour of silica colloids: the role of competing electrostatic and entropic interactions
Mehta, S., Bahadur, J., Sen, D., Aswal, V. K., & Kohlbrecher, J. (2022). Unravelling the polyethylenimine mediated non-monotonic stability behaviour of silica colloids: the role of competing electrostatic and entropic interactions. Physical Chemistry Chemical Physics, 24(36), 21740-21749. https://doi.org/10.1039/D2CP02699F
Impact of substitution on reactions and stability of one-electron oxidised phenyl sulfonates in aqueous solution
Nemeth, T., de Wild, T., Gubler, L., & Nauser, T. (2022). Impact of substitution on reactions and stability of one-electron oxidised phenyl sulfonates in aqueous solution. Physical Chemistry Chemical Physics, 24(2), 895-901. https://doi.org/10.1039/d1cp04518k
 

Pages