Active Filters

  • (-) Journals = Protein Science
Search Results 1 - 20 of 43
Select Page
Conserved proline residues prevent dimerization and aggregation in the β‐lactamase BlaC
Chikunova, A., Manley, M. P., Heijjer, C. N., Drenth, C. S., Cramer‐Blok, A. J., Ahmad, M. U. D., … Ubbink, M. (2024). Conserved proline residues prevent dimerization and aggregation in the β‐lactamase BlaC. Protein Science, 33(4). https://doi.org/10.1002/pro.4972
Mutational and structural studies of (βα)<sub>8</sub>-barrel fold methylene-tetrahydropterin reductases utilizing a common catalytic mechanism
Gehl, M., Demmer, U., Ermler, U., & Shima, S. (2024). Mutational and structural studies of (βα)8-barrel fold methylene-tetrahydropterin reductases utilizing a common catalytic mechanism. Protein Science, 33(6), e5018 (18 pp.). https://doi.org/10.1002/pro.5018
Multimeric structure of a subfamily III haloalkane dehalogenase‐like enzyme solved by combination of cryo‐EM and x‐ray crystallography
Chmelova, K., Gao, T., Polak, M., Schenkmayerova, A., Croll, T. I., Shaikh, T. R., … Marek, M. (2023). Multimeric structure of a subfamily III haloalkane dehalogenase‐like enzyme solved by combination of cryo‐EM and x‐ray crystallography. Protein Science, 32(10), e4751 (22 pp.). https://doi.org/10.1002/pro.4751
N‐terminal β‐strand in YAP is critical for stronger binding to scalloped relative to TEAD transcription factor
Fedir, B., Yannick, M., Marco, M., Patrizia, F., Catherine, Z., Frédéric, V., … Patrick, C. (2023). N‐terminal β‐strand in YAP is critical for stronger binding to scalloped relative to TEAD transcription factor. Protein Science, 32(1), e4545 (13 pp.). https://doi.org/10.1002/pro.4545
Computational design of N‐linked glycans for high throughput epitope profiling
Greisen, P. J., Yi, L., Zhou, R., Zhou, J., Johansson, E., Dong, T., … Østergaard, H. (2023). Computational design of N‐linked glycans for high throughput epitope profiling. Protein Science, 32(10), e4726 (11 pp.). https://doi.org/10.1002/pro.4726
Design and optimization of enzymatic activity in a de novo β-barrel scaffold
Kipnis, Y., Chaib, A. O., Vorobieva, A. A., Cai, G., Reggiano, G., Basanta, B., … Baker, D. (2022). Design and optimization of enzymatic activity in a de novo β-barrel scaffold. Protein Science, 31(11), e4405 (15 pp.). https://doi.org/10.1002/pro.4405
PcoB is a defense outer membrane protein that facilitates cellular uptake of copper
Li, P., Nayeri, N., Górecki, K., Becares, E. R., Wang, K., Mahato, D. R., … Gourdon, P. (2022). PcoB is a defense outer membrane protein that facilitates cellular uptake of copper. Protein Science, 31(7), e4364 (16 pp.). https://doi.org/10.1002/pro.4364
Crystal structure of<em> Aedes aegypti</em> trypsin inhibitor in complex with μ-plasmin reveals role for scaffold stability in Kazal-type serine protease inhibitor
Walvekar, V. A., Ramesh, K., Jobichen, C., Kannan, M., Sivaraman, J., Kini, R. M., & Mok, Y. K. (2022). Crystal structure of Aedes aegypti trypsin inhibitor in complex with μ-plasmin reveals role for scaffold stability in Kazal-type serine protease inhibitor. Protein Science, 31(2), 470-484. https://doi.org/10.1002/pro.4245
Insulin binding to the analytical antibody sandwich pair OXI‐005 and HUI‐018: epitope mapping and binding properties
Johansson, E., Wu, X., Yu, B., Yang, Z., Cao, Z., Wiberg, C., … Poulsen, F. (2021). Insulin binding to the analytical antibody sandwich pair OXI‐005 and HUI‐018: epitope mapping and binding properties. Protein Science, 30(2), 485-496. https://doi.org/10.1002/pro.4009
A newly introduced salt bridge cluster improves structural and biophysical properties of <em>de novo</em> TIM barrels
Kordes, S., Romero-Romero, S., Lutz, L., & Höcker, B. (2021). A newly introduced salt bridge cluster improves structural and biophysical properties of de novo TIM barrels. Protein Science, 31(2), 513-527. https://doi.org/10.1002/pro.4249
Extension of a <em>de novo</em> TIM barrel with a rationally designed secondary structure element
Wiese, J. G., Shanmugaratnam, S., & Höcker, B. (2021). Extension of a de novo TIM barrel with a rationally designed secondary structure element. Protein Science, 30(5), 982-989. https://doi.org/10.1002/pro.4064
Identification of FAM181A and FAM181B as new interactors with the TEAD transcription factors
Bokhovchuk, F., Mesrouze, Y., Delaunay, C., Martin, T., Villard, F., Meyerhofer, M., … Chène, P. (2020). Identification of FAM181A and FAM181B as new interactors with the TEAD transcription factors. Protein Science, 29(2), 509-520. https://doi.org/10.1002/pro.3775
X-ray crystal structure localizes the mechanism of inhibition of an IL-36R antagonist monoclonal antibody to interaction with Ig1 and Ig2 extra cellular domains
Larson, E. T., Brennan, D. L., Hickey, E. R., Ganesan, R., Kroe‐Barrett, R., & Farrow, N. A. (2020). X-ray crystal structure localizes the mechanism of inhibition of an IL-36R antagonist monoclonal antibody to interaction with Ig1 and Ig2 extra cellular domains. Protein Science, 29(7), 1679-1686. https://doi.org/10.1002/pro.3862
Influence of circular permutations on the structure and stability of a six-fold circular symmetric designer protein
Mylemans, B., Noguchi, H., Deridder, E., Lescrinier, E., Tame, J. R. H., & Voet, A. R. D. (2020). Influence of circular permutations on the structure and stability of a six-fold circular symmetric designer protein. Protein Science, 29(12), 2375-2386. https://doi.org/10.1002/pro.3961
Type I fatty acid synthase trapped in the octanoyl-bound state
Rittner, A., Paithankar, K. S., Himmler, A., & Grininger, M. (2020). Type I fatty acid synthase trapped in the octanoyl-bound state. Protein Science, 29(2), 589-605. https://doi.org/10.1002/pro.3797
Adaptation of the bound intrinsically disordered protein YAP to mutations at the YAP:TEAD interface
Mesrouze, Y., Bokhovchuk, F., Izaac, A., Meyerhofer, M., Zimmermann, C., Fontana, P., … Chène, P. (2018). Adaptation of the bound intrinsically disordered protein YAP to mutations at the YAP:TEAD interface. Protein Science, 27(10), 1810-1820. https://doi.org/10.1002/pro.3493
The bulky and the sweet: How neutralizing antibodies and glycan receptors compete for virus binding
Dietrich, M. H., Harprecht, C., & Stehle, T. (2017). The bulky and the sweet: How neutralizing antibodies and glycan receptors compete for virus binding. Protein Science, 26(12), 2342-2354. https://doi.org/10.1002/pro.3319
Structures of designed armadillo repeat proteins binding to peptides fused to globular domains
Hansen, S., Kiefer, J. D., Madhurantakam, C., Mittl, P. R. E., & Plückthun, A. (2017). Structures of designed armadillo repeat proteins binding to peptides fused to globular domains. Protein Science, 26(10), 1942-1952. https://doi.org/10.1002/pro.3229
The macro domain as fusion tag for carrier-driven crystallization
Hothorn, M., & Wild, R. (2017). The macro domain as fusion tag for carrier-driven crystallization. Protein Science, 26(2), 365-374. https://doi.org/10.1002/pro.3073
Rigidity of the extracellular part of HER2: evidence from engineering subdomain interfaces and shared-helix DARPin-DARPin fusions
Jost, C., Stüber, J. C., Honegger, A., Wu, Y., Batyuk, A., & Plückthun, A. (2017). Rigidity of the extracellular part of HER2: evidence from engineering subdomain interfaces and shared-helix DARPin-DARPin fusions. Protein Science, 26(9), 1796-1806. https://doi.org/10.1002/pro.3216