| Conserved proline residues prevent dimerization and aggregation in the β‐lactamase BlaC
Chikunova, A., Manley, M. P., Heijjer, C. N., Drenth, C. S., Cramer‐Blok, A. J., Ahmad, M. U. D., … Ubbink, M. (2024). Conserved proline residues prevent dimerization and aggregation in the β‐lactamase BlaC. Protein Science, 33(4). https://doi.org/10.1002/pro.4972 |
| Mutational and structural studies of (βα)<sub>8</sub>-barrel fold methylene-tetrahydropterin reductases utilizing a common catalytic mechanism
Gehl, M., Demmer, U., Ermler, U., & Shima, S. (2024). Mutational and structural studies of (βα)8-barrel fold methylene-tetrahydropterin reductases utilizing a common catalytic mechanism. Protein Science, 33(6), e5018 (18 pp.). https://doi.org/10.1002/pro.5018 |
| Multimeric structure of a subfamily III haloalkane dehalogenase‐like enzyme solved by combination of cryo‐EM and x‐ray crystallography
Chmelova, K., Gao, T., Polak, M., Schenkmayerova, A., Croll, T. I., Shaikh, T. R., … Marek, M. (2023). Multimeric structure of a subfamily III haloalkane dehalogenase‐like enzyme solved by combination of cryo‐EM and x‐ray crystallography. Protein Science, 32(10), e4751 (22 pp.). https://doi.org/10.1002/pro.4751 |
| N‐terminal β‐strand in YAP is critical for stronger binding to scalloped relative to TEAD transcription factor
Fedir, B., Yannick, M., Marco, M., Patrizia, F., Catherine, Z., Frédéric, V., … Patrick, C. (2023). N‐terminal β‐strand in YAP is critical for stronger binding to scalloped relative to TEAD transcription factor. Protein Science, 32(1), e4545 (13 pp.). https://doi.org/10.1002/pro.4545 |
| Computational design of N‐linked glycans for high throughput epitope profiling
Greisen, P. J., Yi, L., Zhou, R., Zhou, J., Johansson, E., Dong, T., … Østergaard, H. (2023). Computational design of N‐linked glycans for high throughput epitope profiling. Protein Science, 32(10), e4726 (11 pp.). https://doi.org/10.1002/pro.4726 |
| Design and optimization of enzymatic activity in a de novo β-barrel scaffold
Kipnis, Y., Chaib, A. O., Vorobieva, A. A., Cai, G., Reggiano, G., Basanta, B., … Baker, D. (2022). Design and optimization of enzymatic activity in a de novo β-barrel scaffold. Protein Science, 31(11), e4405 (15 pp.). https://doi.org/10.1002/pro.4405 |
| PcoB is a defense outer membrane protein that facilitates cellular uptake of copper
Li, P., Nayeri, N., Górecki, K., Becares, E. R., Wang, K., Mahato, D. R., … Gourdon, P. (2022). PcoB is a defense outer membrane protein that facilitates cellular uptake of copper. Protein Science, 31(7), e4364 (16 pp.). https://doi.org/10.1002/pro.4364 |
| Crystal structure of<em> Aedes aegypti</em> trypsin inhibitor in complex with μ-plasmin reveals role for scaffold stability in Kazal-type serine protease inhibitor
Walvekar, V. A., Ramesh, K., Jobichen, C., Kannan, M., Sivaraman, J., Kini, R. M., & Mok, Y. K. (2022). Crystal structure of Aedes aegypti trypsin inhibitor in complex with μ-plasmin reveals role for scaffold stability in Kazal-type serine protease inhibitor. Protein Science, 31(2), 470-484. https://doi.org/10.1002/pro.4245 |
| Insulin binding to the analytical antibody sandwich pair OXI‐005 and HUI‐018: epitope mapping and binding properties
Johansson, E., Wu, X., Yu, B., Yang, Z., Cao, Z., Wiberg, C., … Poulsen, F. (2021). Insulin binding to the analytical antibody sandwich pair OXI‐005 and HUI‐018: epitope mapping and binding properties. Protein Science, 30(2), 485-496. https://doi.org/10.1002/pro.4009 |
| A newly introduced salt bridge cluster improves structural and biophysical properties of <em>de novo</em> TIM barrels
Kordes, S., Romero-Romero, S., Lutz, L., & Höcker, B. (2021). A newly introduced salt bridge cluster improves structural and biophysical properties of de novo TIM barrels. Protein Science, 31(2), 513-527. https://doi.org/10.1002/pro.4249 |
| Extension of a <em>de novo</em> TIM barrel with a rationally designed secondary structure element
Wiese, J. G., Shanmugaratnam, S., & Höcker, B. (2021). Extension of a de novo TIM barrel with a rationally designed secondary structure element. Protein Science, 30(5), 982-989. https://doi.org/10.1002/pro.4064 |
| Identification of FAM181A and FAM181B as new interactors with the TEAD transcription factors
Bokhovchuk, F., Mesrouze, Y., Delaunay, C., Martin, T., Villard, F., Meyerhofer, M., … Chène, P. (2020). Identification of FAM181A and FAM181B as new interactors with the TEAD transcription factors. Protein Science, 29(2), 509-520. https://doi.org/10.1002/pro.3775 |
| X-ray crystal structure localizes the mechanism of inhibition of an IL-36R antagonist monoclonal antibody to interaction with Ig1 and Ig2 extra cellular domains
Larson, E. T., Brennan, D. L., Hickey, E. R., Ganesan, R., Kroe‐Barrett, R., & Farrow, N. A. (2020). X-ray crystal structure localizes the mechanism of inhibition of an IL-36R antagonist monoclonal antibody to interaction with Ig1 and Ig2 extra cellular domains. Protein Science, 29(7), 1679-1686. https://doi.org/10.1002/pro.3862 |
| Influence of circular permutations on the structure and stability of a six-fold circular symmetric designer protein
Mylemans, B., Noguchi, H., Deridder, E., Lescrinier, E., Tame, J. R. H., & Voet, A. R. D. (2020). Influence of circular permutations on the structure and stability of a six-fold circular symmetric designer protein. Protein Science, 29(12), 2375-2386. https://doi.org/10.1002/pro.3961 |
| Type I fatty acid synthase trapped in the octanoyl-bound state
Rittner, A., Paithankar, K. S., Himmler, A., & Grininger, M. (2020). Type I fatty acid synthase trapped in the octanoyl-bound state. Protein Science, 29(2), 589-605. https://doi.org/10.1002/pro.3797 |
| Adaptation of the bound intrinsically disordered protein YAP to mutations at the YAP:TEAD interface
Mesrouze, Y., Bokhovchuk, F., Izaac, A., Meyerhofer, M., Zimmermann, C., Fontana, P., … Chène, P. (2018). Adaptation of the bound intrinsically disordered protein YAP to mutations at the YAP:TEAD interface. Protein Science, 27(10), 1810-1820. https://doi.org/10.1002/pro.3493 |
| The bulky and the sweet: How neutralizing antibodies and glycan receptors compete for virus binding
Dietrich, M. H., Harprecht, C., & Stehle, T. (2017). The bulky and the sweet: How neutralizing antibodies and glycan receptors compete for virus binding. Protein Science, 26(12), 2342-2354. https://doi.org/10.1002/pro.3319 |
| Structures of designed armadillo repeat proteins binding to peptides fused to globular domains
Hansen, S., Kiefer, J. D., Madhurantakam, C., Mittl, P. R. E., & Plückthun, A. (2017). Structures of designed armadillo repeat proteins binding to peptides fused to globular domains. Protein Science, 26(10), 1942-1952. https://doi.org/10.1002/pro.3229 |
| The macro domain as fusion tag for carrier-driven crystallization
Hothorn, M., & Wild, R. (2017). The macro domain as fusion tag for carrier-driven crystallization. Protein Science, 26(2), 365-374. https://doi.org/10.1002/pro.3073 |
| Rigidity of the extracellular part of HER2: evidence from engineering subdomain interfaces and shared-helix DARPin-DARPin fusions
Jost, C., Stüber, J. C., Honegger, A., Wu, Y., Batyuk, A., & Plückthun, A. (2017). Rigidity of the extracellular part of HER2: evidence from engineering subdomain interfaces and shared-helix DARPin-DARPin fusions. Protein Science, 26(9), 1796-1806. https://doi.org/10.1002/pro.3216 |