Active Filters

  • (-) Journals = Science
Search Results 1 - 20 of 135

Pages

  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
Cap-specific terminal <em>N</em><sup>6</sup>-methylation of RNA by an RNA polymerase II-associated methyltransferase
Akichika, S., Hirano, S., Shichino, Y., Suzuki, T., Nishimasu, H., Ishitani, R., … Suzuki, T. (2019). Cap-specific terminal N6-methylation of RNA by an RNA polymerase II-associated methyltransferase. Science, 363(6423), eaav0080 (7 pp.). https://doi.org/10.1126/science.aav0080
Chirally coupled nanomagnets
Luo, Z., Dao, P. T., Hrabec, A., Vijayakumar, J., Kleibert, A., Baumgartner, M., … Gambardella, P. (2019). Chirally coupled nanomagnets. Science, 363(6434), 1435-1439. https://doi.org/10.1126/science.aau7913
Protein crystallization promotes type 2 immunity and is reversible by antibody treatment
Persson, E. K., Verstraete, K., Heyndrickx, I., Gevaert, E., Aegerter, H., Percier, J. M., … Lambrecht, B. N. (2019). Protein crystallization promotes type 2 immunity and is reversible by antibody treatment. Science, 364(6442), eaaw4295 (17 pp.). https://doi.org/10.1126/science.aaw4295
The structure of a membrane adenylyl cyclase bound to an activated stimulatory G protein
Qi, C., Sorrentino, S., Medalia, O., & Korkhov, V. M. (2019). The structure of a membrane adenylyl cyclase bound to an activated stimulatory G protein. Science, 364(6438), 389-394. https://doi.org/10.1126/science.aav0778
Structural basis for blue-green light harvesting and energy dissipation in diatoms
Wang, W., Yu, L. J., Xu, C., Tomizaki, T., Zhao, S., Umena, Y., … Shen, J. R. (2019). Structural basis for blue-green light harvesting and energy dissipation in diatoms. Science, 363(6427), 598 (8 pp.). https://doi.org/10.1126/science.aav0365
Proton uptake mechanism in bacteriorhodopsin captured by serial synchrotron crystallography
Weinert, T., Skopintsev, P., James, D., Dworkowski, F., Panepucci, E., Kekilli, D., … Standfuss, J. (2019). Proton uptake mechanism in bacteriorhodopsin captured by serial synchrotron crystallography. Science, 365(6448), 61-65. https://doi.org/10.1126/science.aaw8634
Structural basis of latent TGF-beta 1 presentation and activation by GARP on human regulatory T cells
Merceron, R., & Lucas, S. (2018). Structural basis of latent TGF-beta 1 presentation and activation by GARP on human regulatory T cells. Science, 362(6417), 952. https://doi.org/10.1126/science.aau2909
Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser
Nogly, P., Weinert, T., James, D., Carbajo, S., Ozerov, D., Furrer, A., … Standfuss, J. (2018). Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser. Science, 361(6398), eaat0094 (7 pp.). https://doi.org/10.1126/science.aat0094
Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN
Sievers, Q. L., Petzold, G., Bunker, R. D., Renneville, A., Słabicki, M., Liddicoat, B. J., … Thomä, N. H. (2018). Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. Science, 362(6414), eaat0572 (9 pp.). https://doi.org/10.1126/science.aat0572
A bound reaction intermediate sheds light on the mechanism of nitrogenase
Sippel, D., Rohde, M., Netzer, J., Trncik, C., Gies, J., Grunau, K., … Einsle, O. (2018). A bound reaction intermediate sheds light on the mechanism of nitrogenase. Science, 359(6383), 1484-1489. https://doi.org/10.1126/science.aar2765
Evolution of a highly active and enantiospecific metalloenzyme from short peptides
Studer, S., Hansen, D. A., Pianowski, Z. L., Mittl, P. R. E., Debon, A., Guffy, S. L., … Hilvert, D. (2018). Evolution of a highly active and enantiospecific metalloenzyme from short peptides. Science, 362(6420), 1285-1288. https://doi.org/10.1126/science.aau3744
Plant RuBisCo assembly in E. coli with five chloroplast chaperones including BSD2
Aigner, H., Wilson, R. H., Bracher, A., Calisse, L., Bhat, J. Y., Hartl, F. U., & Hayer-Hartl, M. (2017). Plant RuBisCo assembly in E. coli with five chloroplast chaperones including BSD2. Science, 358(6368), 1272-1278. https://doi.org/10.1126/science.aap9221
Femtosecond electron-phonon lock-in by photoemission and x-ray free-electron laser
Gerber, S., Yang, S. L., Zhu, D., Soifer, H., Sobota, J. A., Rebec, S., … Shen, Z. X. (2017). Femtosecond electron-phonon lock-in by photoemission and x-ray free-electron laser. Science, 357(6346), 71-75. https://doi.org/10.1126/science.aak9946
The target landscape of clinical kinase drugs
Klaeger, S., Heinzlmeir, S., Wilhelm, M., Polzer, H., Vick, B., Koenig, P. A., … Kuster, B. (2017). The target landscape of clinical kinase drugs. Science, 358(6367), eaan4368. https://doi.org/10.1126/science.aan4368
Response to Comment on “Selective anaerobic oxidation of methane enables direct synthesis of methanol”
Sushkevich, V. L., Palagin, D., Ranocchiari, M., & van Bokhoven, J. A. (2017). Response to Comment on “Selective anaerobic oxidation of methane enables direct synthesis of methanol”. Science, 358(6360), eaan6083. https://doi.org/10.1126/science.aan6083
Selective anaerobic oxidation of methane enables direct synthesis of methanol
Sushkevich, V. L., Palagin, D., Ranocchiari, M., & van Bokhoven, J. A. (2017). Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science, 356(6337), 523-527. https://doi.org/10.1126/science.aam9035
Structure of the TAPBPR–MHC I complex defines the mechanism of peptide loading and editing
Thomas, C., & Tampé, R. (2017). Structure of the TAPBPR–MHC I complex defines the mechanism of peptide loading and editing. Science, 358(6366), 1060-1064. https://doi.org/10.1126/science.aao6001
Methanogenic heterodisulfide reductase (HdrABC-MvhAGD) uses two noncubane [4Fe-4S] clusters for reduction
Wagner, T., Koch, J., Ermler, U., & Shima, S. (2017). Methanogenic heterodisulfide reductase (HdrABC-MvhAGD) uses two noncubane [4Fe-4S] clusters for reduction. Science, 357(6352), 699-703. https://doi.org/10.1126/science.aan0425
Architecture of human mTOR complex 1
Aylett, C. H. S., Sauer, E., Imseng, S., Boehringer, D., Hall, M. N., Ban, N., & Maier, T. (2016). Architecture of human mTOR complex 1. Science, 351(6268), 48-52. https://doi.org/10.1126/science.aaa3870
New particle formation in the free troposphere: a question of chemistry and timing
Bianchi, F., Tröstl, J., Junninen, H., Frege, C., Henne, S., Hoyle, C. R., … Baltensperger, U. (2016). New particle formation in the free troposphere: a question of chemistry and timing. Science, 352(6289), 1109-1112. https://doi.org/10.1126/science.aad5456
 

Pages