Active Filters

  • (-) Journals = Scientific Reports
  • (-) Beamlines ≠ ICON
  • (-) Beamlines = PXIII
Search Results 1 - 20 of 26
Select Page
Modulation of tau tubulin kinases (TTBK1 and TTBK2) impacts ciliogenesis
Bashore, F. M., Marquez, A. B., Chaikuad, A., Howell, S., Dunn, A. S., Beltran, A. A., … Axtman, A. D. (2023). Modulation of tau tubulin kinases (TTBK1 and TTBK2) impacts ciliogenesis. Scientific Reports, 13(1), 6118 (17 pp.). https://doi.org/10.1038/s41598-023-32854-4
Mutant structure of metabolic switch protein in complex with monomeric c-di-GMP reveals a potential mechanism of protein-mediated ligand dimerization
Dubey, B. N., Shyp, V., Fucile, G., Sondermann, H., Jenal, U., & Schirmer, T. (2023). Mutant structure of metabolic switch protein in complex with monomeric c-di-GMP reveals a potential mechanism of protein-mediated ligand dimerization. Scientific Reports, 13(1), 2727 (13 pp.). https://doi.org/10.1038/s41598-023-29110-0
Virtual screening identifies broad-spectrum <em>β</em>-lactamase inhibitors with activity on clinically relevant serine- and metallo-carbapenemases
Spyrakis, F., Santucci, M., Maso, L., Cross, S., Gianquinto, E., Sannio, F., … Costi, M. P. (2020). Virtual screening identifies broad-spectrum β-lactamase inhibitors with activity on clinically relevant serine- and metallo-carbapenemases. Scientific Reports, 10(1), 12763 (15 pp.). https://doi.org/10.1038/s41598-020-69431-y
What does fluorine do to a protein? Thermodynamic, and highly-resolved structural insights into fluorine-labelled variants of the cold shock protein
Welte, H., Zhou, T., Mihajlenko, X., Mayans, O., & Kovermann, M. (2020). What does fluorine do to a protein? Thermodynamic, and highly-resolved structural insights into fluorine-labelled variants of the cold shock protein. Scientific Reports, 10(1), 2640 (12 pp.). https://doi.org/10.1038/s41598-020-59446-w
Structural analysis of biological targets by host:guest crystal lattice engineering
Ernst, P., Plückthun, A., & Mittl, P. R. E. (2019). Structural analysis of biological targets by host:guest crystal lattice engineering. Scientific Reports, 9(1), 15199 (11 pp.). https://doi.org/10.1038/s41598-019-51017-y
Position 123 of halohydrin dehalogenase HheG plays an important role in stability, activity, and enantioselectivity
Solarczek, J., Klünemann, T., Brandt, F., Schrepfer, P., Wolter, M., Jacob, C. R., … Schallmey, A. (2019). Position 123 of halohydrin dehalogenase HheG plays an important role in stability, activity, and enantioselectivity. Scientific Reports, 9(1), 5106 (10 pp.). https://doi.org/10.1038/s41598-019-41498-2
Conformational states during vinculin unlocking differentially regulate focal adhesion properties
Chorev, D. S., Volberg, T., Livne, A., Eisenstein, M., Martins, B., Kam, Z., … Geiger, B. (2018). Conformational states during vinculin unlocking differentially regulate focal adhesion properties. Scientific Reports, 8(1), 2693 (14 pp.). https://doi.org/10.1038/s41598-018-21006-8
COMP and TSP-4 interact specifically with the novel GXKGHR motif only found in fibrillar collagens
Gebauer, J. M., Köhler, A., Dietmar, H., Gompert, M., Neundorf, I., Zaucke, F., … Baumann, U. (2018). COMP and TSP-4 interact specifically with the novel GXKGHR motif only found in fibrillar collagens. Scientific Reports, 8(1), 17187. https://doi.org/10.1038/s41598-018-35447-8
Structure of the replication regulator Sap1 reveals functionally important interfaces
Jørgensen, M. M., Ekundayo, B., Zaratiegui, M., Skriver, K., Thon, G., & Schalch, T. (2018). Structure of the replication regulator Sap1 reveals functionally important interfaces. Scientific Reports, 8(1), 10930 (9 pp.). https://doi.org/10.1038/s41598-018-29198-9
Structural basis of cell wall peptidoglycan amidation by the GatD/MurT complex of <em>Staphylococcus aureus</em>
Nöldeke, E. R., Muckenfuss, L. M., Niemann, V., Müller, A., Störk, E., Zocher, G., … Stehle, T. (2018). Structural basis of cell wall peptidoglycan amidation by the GatD/MurT complex of Staphylococcus aureus. Scientific Reports, 8(1), 12953 (15 pp.). https://doi.org/10.1038/s41598-018-31098-x
Thermal stabilization of the deglycating enzyme Amadoriase I by rational design
Rigoldi, F., Donini, S., Giacomina, F., Sorana, F., Redaelli, A., Bandiera, T., … Gautieri, A. (2018). Thermal stabilization of the deglycating enzyme Amadoriase I by rational design. Scientific Reports, 8(1), 3042 (14 pp.). https://doi.org/10.1038/s41598-018-19991-x
The protein kinase CK2 catalytic domain from <em>Plasmodium falciparum</em>: crystal structure, tyrosine kinase activity and inhibition
Ruiz-Carrillo, D., Lin, J., El Sahili, A., Wei, M., Sze, S. K., Cheung, P. C. F., … Lescar, J. (2018). The protein kinase CK2 catalytic domain from Plasmodium falciparum: crystal structure, tyrosine kinase activity and inhibition. Scientific Reports, 8(1), 7365 (12 pp.). https://doi.org/10.1038/s41598-018-25738-5
Self-assembled <em>α</em>-tocopherol transfer protein nanoparticles promote vitamin E delivery across an endothelial barrier
Aeschimann, W., Staats, S., Kammer, S., Olieric, N., Jeckelmann, J. M., Fotiadis, D., … Stocker, A. (2017). Self-assembled α-tocopherol transfer protein nanoparticles promote vitamin E delivery across an endothelial barrier. Scientific Reports, 7, 4970 (13 pp.). https://doi.org/10.1038/s41598-017-05148-9
Crystal structure of the BoNT/A2 receptor-binding domain in complex with the luminal domain of its neuronal receptor SV2C
Benoit, R. M., Schärer, M. A., Wieser, M. M., Li, X., Frey, D., & Kammerer, R. A. (2017). Crystal structure of the BoNT/A2 receptor-binding domain in complex with the luminal domain of its neuronal receptor SV2C. Scientific Reports, 7, 43588 (7 pp.). https://doi.org/10.1038/srep43588
A family of archaea-like carboxylesterases preferentially expressed in the symbiotic phase of the mychorrizal fungus <em>Tuber melanosporum</em>
Cavazzini, D., Grossi, G., Levati, E., Vallese, F., Montanini, B., Bolchi, A., … Ottonello, S. (2017). A family of archaea-like carboxylesterases preferentially expressed in the symbiotic phase of the mychorrizal fungus Tuber melanosporum. Scientific Reports, 7(1), 7628 (15 pp.). https://doi.org/10.1038/s41598-017-08007-9
Design and applications of a clamp for green fluorescent protein with picomolar affinity
Hansen, S., Stüber, J. C., Ernst, P., Koch, A., Bojar, D., Batyuk, A., & Plückthun, A. (2017). Design and applications of a clamp for green fluorescent protein with picomolar affinity. Scientific Reports, 7(1), 16292 (16 pp.). https://doi.org/10.1038/s41598-017-15711-z
Structural and functional analysis of latex clearing protein (Lcp) provides insight into the enzymatic cleavage of rubber
Ilcu, L., Röther, W., Birke, J., Brausemann, A., Einsle, O., & Jendrossek, D. (2017). Structural and functional analysis of latex clearing protein (Lcp) provides insight into the enzymatic cleavage of rubber. Scientific Reports, 7(1), 6179 (11 pp.). https://doi.org/10.1038/s41598-017-05268-2
Structural variability of &lt;em&gt;E. coli&lt;/em&gt; thioredoxin captured in the crystal structures of single-point mutants
Noguera, M. E., Vazquez, D. S., Ferrer-Sueta, G., Agudelo, W. A., Howard, E., Rasia, R. M., … Santos, J. (2017). Structural variability of E. coli thioredoxin captured in the crystal structures of single-point mutants. Scientific Reports, 7, 42343 (12 pp.). https://doi.org/10.1038/srep42343
Structural basis of katanin p60:p80 complex formation
Rezabkova, L., Jiang, K., Capitani, G., Prota, A. E., Akhmanova, A., Steinmetz, M. O., & Kammerer, R. A. (2017). Structural basis of katanin p60:p80 complex formation. Scientific Reports, 7, 14893 (8 pp.). https://doi.org/10.1038/s41598-017-14194-2
Rigidly connected multispecific artificial binders with adjustable geometries
Wu, Y., Batyuk, A., Honegger, A., Brandl, F., Mittl, P. R. E., & Plückthun, A. (2017). Rigidly connected multispecific artificial binders with adjustable geometries. Scientific Reports, 7(1), 11217 (11 pp.). https://doi.org/10.1038/s41598-017-11472-x