Active Filters

  • (-) Journals = Scientific Reports
  • (-) Beamlines ≠ XIL-II
  • (-) PSI Laboratories = Nanoscale Biology LNB
Search Results 1 - 11 of 11
  • RSS Feed
Select Page
Understanding the microstructure of a core-shell anode catalyst layer for polymer electrolyte water electrolysis
De Angelis, S., Schuler, T., Sabharwal, M., Holler, M., Guizar-Sicairos, M., Müller, E., & Büchi, F. N. (2023). Understanding the microstructure of a core-shell anode catalyst layer for polymer electrolyte water electrolysis. Scientific Reports, 13(1), 4280 (11 pp.). https://doi.org/10.1038/s41598-023-30960-x
Detecting radio- and chemoresistant cells in 3D cancer co-cultures using chromatin biomarkers
Pekeč, T., Venkatachalapathy, S., Shim, A. R., Paysan, D., Grzmil, M., Schibli, R., … Shivashankar, G. V. (2023). Detecting radio- and chemoresistant cells in 3D cancer co-cultures using chromatin biomarkers. Scientific Reports, 13(1), 20662 (14 pp.). https://doi.org/10.1038/s41598-023-47287-2
Acoustic levitation and rotation of thin films and their application for room temperature protein crystallography
Kepa, M. W., Tomizaki, T., Sato, Y., Ozerov, D., Sekiguchi, H., Yasuda, N., … Tsujino, S. (2022). Acoustic levitation and rotation of thin films and their application for room temperature protein crystallography. Scientific Reports, 12, 5349 (14 pp.). https://doi.org/10.1038/s41598-022-09167-z
Low-dose shift- and rotation-invariant diffraction recognition imaging
Latychevskaia, T., & Kohli, A. (2022). Low-dose shift- and rotation-invariant diffraction recognition imaging. Scientific Reports, 12(1), 11202 (9 pp.). https://doi.org/10.1038/s41598-022-15486-y
Actomyosin contractility as a mechanical checkpoint for cell state transitions
Venkatachalapathy, S., Sreekumar, D., Ratna, P., & Shivashankar, G. V. (2022). Actomyosin contractility as a mechanical checkpoint for cell state transitions. Scientific Reports, 12(1), 16063 (13 pp.). https://doi.org/10.1038/s41598-022-20089-8
Lateral confined growth of cells activates Lef1 dependent pathways to regulate cell-state transitions
Yuan, L., Roy, B., Ratna, P., Uhler, C., & Shivashankar, G. V. (2022). Lateral confined growth of cells activates Lef1 dependent pathways to regulate cell-state transitions. Scientific Reports, 12(1), 17318 (13 pp.). https://doi.org/10.1038/s41598-022-21596-4
Single cell imaging-based chromatin biomarkers for tumor progression
Venkatachalapathy, S., Jokhun, D. S., Andhari, M., & Shivashankar, G. V. (2021). Single cell imaging-based chromatin biomarkers for tumor progression. Scientific Reports, 11(1), 23041 (14 pp.). https://doi.org/10.1038/s41598-021-02441-6
The wild-type flagellar filament of the Firmicute <em>Kurthia </em>at 2.8 Å resolution <em>in vivo</em>
Blum, T. B., Filippidou, S., Fatton, M., Junier, P., & Abrahams, J. P. (2019). The wild-type flagellar filament of the Firmicute Kurthia at 2.8 Å resolution in vivo. Scientific Reports, 9(1), 14948 (8 pp.). https://doi.org/10.1038/s41598-019-51440-1
Arrestin-1 engineering facilitates complex stabilization with native rhodopsin
Haider, R. S., Wilhelm, F., Rizk, A., Mutt, E., Deupi, X., Peterhans, C., … Ostermaier, M. K. (2019). Arrestin-1 engineering facilitates complex stabilization with native rhodopsin. Scientific Reports, 9(1), 439 (13 pp.). https://doi.org/10.1038/s41598-018-36881-4
Regulation of VEGFR2 trafficking and signaling by Rab GTPase-activating proteins
Xie, Y., Mansouri, M., Rizk, A., & Berger, P. (2019). Regulation of VEGFR2 trafficking and signaling by Rab GTPase-activating proteins. Scientific Reports, 9(1), 13342 (12 pp.). https://doi.org/10.1038/s41598-019-49646-4
Cerebral <em>Corpora amylacea</em> are dense membranous labyrinths containing structurally preserved cell organelles
Navarro, P. P., Genoud, C., Castaño-Díez, D., Graff-Meyer, A., Lewis, A. J., de Gier, Y., … Shahmoradian, S. H. (2018). Cerebral Corpora amylacea are dense membranous labyrinths containing structurally preserved cell organelles. Scientific Reports, 8(1), 18046 (13 pp.). https://doi.org/10.1038/s41598-018-36223-4