| Boundary conditions for promotion versus poisoning in copper–gallium-based CO<sub>2</sub>-to-methanol hydrogenation catalysts
Alfke, J. L., Tejeda-Serrano, M., Phadke, S., Tereshchenko, A., Gani, T. Z. H., Rochlitz, L., … Safonova, O. V. (2024). Boundary conditions for promotion versus poisoning in copper–gallium-based CO2-to-methanol hydrogenation catalysts. ACS Catalysis, 14, 9166-9175. https://doi.org/10.1021/acscatal.4c01985 |
| Decisive influence of SAPO-34 zeolite on light olefin selectivity in methanol-meditated CO<sub>2</sub> hydrogenation over metal oxide-zeolite catalysts
Chernyak, S. A., Corda, M., Marinova, M., Safonova, O. V., Kondratenko, V. A., Kondratenko, E. V., … Khodakov, A. Y. (2023). Decisive influence of SAPO-34 zeolite on light olefin selectivity in methanol-meditated CO2 hydrogenation over metal oxide-zeolite catalysts. ACS Catalysis, 13(22), 14627-14638. https://doi.org/10.1021/acscatal.3c03759 |
| A review of in situ/operando studies of heterogeneous catalytic hydrogenation of CO<sub>2</sub> to methanol
Li, Y., & Wu, Z. (2023). A review of in situ/operando studies of heterogeneous catalytic hydrogenation of CO2 to methanol. Catalysis Today, 420, 114029 (18 pp.). https://doi.org/10.1016/j.cattod.2023.02.006 |
| Bifunctionality of Re Supported on TiO<sub>2</sub> in driving methanol formation in low-temperature CO<sub>2</sub> hydrogenation
Phongprueksathat, N., Ting, K. W., Mine, S., Jing, Y., Toyoshima, R., Kondoh, H., … Urakawa, A. (2023). Bifunctionality of Re Supported on TiO2 in driving methanol formation in low-temperature CO2 hydrogenation. ACS Catalysis, 13(16), 10734-10750. https://doi.org/10.1021/acscatal.3c01599 |
| Combining atomic layer deposition with surface organometallic chemistry to enhance atomic-scale interactions and improve the activity and selectivity of Cu-Zn/SiO<sub>2</sub> catalysts for the hydrogenation of CO<sub>2</sub> to methanol
Zhou, H., Docherty, S. R., Phongprueksathat, N., Chen, Z., Bukhtiyarov, A. V., Prosvirin, I. P., … Fedorov, A. (2023). Combining atomic layer deposition with surface organometallic chemistry to enhance atomic-scale interactions and improve the activity and selectivity of Cu-Zn/SiO2 catalysts for the hydrogenation of CO2 to methanol. JACS Au, 3(9), 2536-2549. https://doi.org/10.1021/jacsau.3c00319 |
| Restructuring Ni/Al<sub>2</sub>O<sub>3</sub> by addition of Ga to shift product selectivity in CO<sub>2</sub> hydrogenation: the role of hydroxyl groups
Bahmanpour, A. M., Nuguid, R. J. G., Savereide, L. M., Mensi, M. D., Ferri, D., Luterbacher, J. S., & Kröcher, O. (2022). Restructuring Ni/Al2O3 by addition of Ga to shift product selectivity in CO2 hydrogenation: the role of hydroxyl groups. Journal of CO2 Utilization, 57, 101881 (9 pp.). https://doi.org/10.1016/j.jcou.2021.101881 |
| Flame spray pyrolysis as a synthesis platform to assess metal promotion in In<sub>2</sub>O<sub>3</sub>-catalyzed CO<sub>2</sub> hydrogenation
Pinheiro Araújo, T., Morales-Vidal, J., Zou, T., García-Muelas, R., Willi, P. O., Engel, K. M., … Pérez-Ramírez, J. (2022). Flame spray pyrolysis as a synthesis platform to assess metal promotion in In2O3-catalyzed CO2 hydrogenation. Advanced Energy Materials, 12(14), 2103707 (13 pp.). https://doi.org/10.1002/aenm.202103707 |
| Recent progress in syngas production via catalytic CO<sub>2</sub> hydrogenation reaction
Bahmanpour, A. M., Signorile, M., & Kröcher, O. (2021). Recent progress in syngas production via catalytic CO2 hydrogenation reaction. Applied Catalysis B: Environmental, 295, 120319 (11 pp.). https://doi.org/10.1016/j.apcatb.2021.120319 |
| Silica-supported PdGa nanoparticles: metal synergy for highly active and selective CO<sub>2</sub>-to-CH<sub>3</sub>OH hydrogenation
Docherty, S. R., Phongprueksathat, N., Lam, E., Noh, G., Safonova, O. V., Urakawa, A., & Copéret, C. (2021). Silica-supported PdGa nanoparticles: metal synergy for highly active and selective CO2-to-CH3OH hydrogenation. JACS Au, 1(4), 450-458. https://doi.org/10.1021/jacsau.1c00021 |
| CO<sub>2</sub> hydrogenation on Cu-catalysts generated from Zn<sup>II</sup> single-sites: enhanced CH<sub>3</sub>OH selectivity compared to Cu/ZnO/Al<sub>2</sub>O<sub>3</sub>
Lam, E., Noh, G., Larmier, K., Safonova, O. V., & Copéret, C. (2021). CO2 hydrogenation on Cu-catalysts generated from ZnII single-sites: enhanced CH3OH selectivity compared to Cu/ZnO/Al2O3. Journal of Catalysis, 394, 266-272. https://doi.org/10.1016/j.jcat.2020.04.028 |
| Lewis acid strength of interfacial metal sites drives CH<sub>3</sub>OH selectivity and formation rates on Cu‐based CO<sub>2</sub> hydrogenation catalysts
Noh, G., Lam, E., Bregante, D. T., Meyet, J., Šot, P., Flaherty, D. W., & Copéret, C. (2021). Lewis acid strength of interfacial metal sites drives CH3OH selectivity and formation rates on Cu‐based CO2 hydrogenation catalysts. Angewandte Chemie International Edition, 60(17), 9650-9659. https://doi.org/10.1002/anie.202100672 |
| Co-precipitated Ni-Mg-Al hydrotalcite-derived catalyst promoted with vanadium for CO<sub>2</sub> methanation
Summa, P., Świrk, K., Wierzbicki, D., Motak, M., Alxneit, I., Rønning, M., & Da Costa, P. (2021). Co-precipitated Ni-Mg-Al hydrotalcite-derived catalyst promoted with vanadium for CO2 methanation. Molecules, 26(21), 6506 (16 pp.). https://doi.org/10.3390/molecules26216506 |
| Solid micellar Ru single-atom catalysts for the water-free hydrogenation of CO<sub>2</sub> to formic acid
Wang, Q., Santos, S., Urbina-Blanco, C. A., Hernández, W. Y., Impéror-Clerc, M., Vovk, E. I., … Ordomsky, V. V. (2021). Solid micellar Ru single-atom catalysts for the water-free hydrogenation of CO2 to formic acid. Applied Catalysis B: Environmental, 290, 120036 (9 pp.). https://doi.org/10.1016/j.apcatb.2021.120036 |
| Mechanistic study of carbon dioxide hydrogenation over Pd/ZnO‐based catalysts: the role of palladium‐zinc alloy in selective methanol synthesis
Zabilskiy, M., Sushkevich, V. L., Newton, M. A., Krumeich, F., Nachtegaal, M., & van Bokhoven, J. A. (2021). Mechanistic study of carbon dioxide hydrogenation over Pd/ZnO‐based catalysts: the role of palladium‐zinc alloy in selective methanol synthesis. Angewandte Chemie International Edition, 60(31), 17053-17059. https://doi.org/10.1002/anie.202103087 |
| Engineering the ZrO<sub>2</sub>-Pd interface for selective CO<sub>2</sub> hydrogenation by overcoating an atomically dispersed Pd precatalyst
Du, Y. P., Bahmanpour, A. M., Milošević, L., Héroguel, F., Mensi, M. D., Kröcher, O., & Luterbacher, J. S. (2020). Engineering the ZrO2-Pd interface for selective CO2 hydrogenation by overcoating an atomically dispersed Pd precatalyst. ACS Catalysis, 10(20), 12058-12070. https://doi.org/10.1021/acscatal.0c02146 |
| Are Fe based catalysts an upcoming alternative to Ni in CO<sub>2</sub> methanation at elevated pressure?
Franken, T., & Heel, A. (2020). Are Fe based catalysts an upcoming alternative to Ni in CO2 methanation at elevated pressure? Journal of CO2 Utilization, 39, 101175 (8 pp.). https://doi.org/10.1016/j.jcou.2020.101175 |
| Increased nickel exsolution from LaFe<sub>0.8</sub>Ni<sub>0.2</sub>O<sub>3</sub> perovskite-derived CO<sub>2</sub> methanation catalysts through strontium doping
Steiger, P., Kröcher, O., & Ferri, D. (2020). Increased nickel exsolution from LaFe0.8Ni0.2O3 perovskite-derived CO2 methanation catalysts through strontium doping. Applied Catalysis A: General, 590, 117328 (8 pp.). https://doi.org/10.1016/j.apcata.2019.117328 |
| Copper-zinc alloy-free synthesis of methanol from carbon dioxide over Cu/ZnO/faujasite
Zabilskiy, M., Sushkevich, V. L., Newton, M. A., & van Bokhoven, J. A. (2020). Copper-zinc alloy-free synthesis of methanol from carbon dioxide over Cu/ZnO/faujasite. ACS Catalysis, 10, 14240-14244. https://doi.org/10.1021/acscatal.0c03661 |
| Cu–Al spinel as a highly active and stable catalyst for the reverse water gas shift reaction
Bahmanpour, A. M., Héroguel, F., Kılıç, M., Baranowski, C. J., Artiglia, L., Röthlisberger, U., … Kröcher, O. (2019). Cu–Al spinel as a highly active and stable catalyst for the reverse water gas shift reaction. ACS Catalysis, 9(7), 6243-6251. https://doi.org/10.1021/acscatal.9b01822 |
| Zr(IV) surface sites determine CH<sub>3</sub>OH formation rate on Cu/ZrO<sub>2</sub>/SiO<sub>2</sub> - CO<sub>2</sub> hydrogenation catalysts
Lam, E., Larmier, K., Tada, S., Wolf, P., Safonova, O. V., & Copéret, C. (2019). Zr(IV) surface sites determine CH3OH formation rate on Cu/ZrO2/SiO2 - CO2 hydrogenation catalysts. Chinese Journal of Catalysis, 40(11), 1741-1748. https://doi.org/10.1016/S1872-2067(19)63348-6 |