Active Filters

  • (-) Keywords = Li-ion battery
Search Results 1 - 11 of 11
  • RSS Feed
Select Page
High performance doped Li-rich Li<sub>1+x</sub>Mn<sub>2-x</sub>O<sub>4</sub> cathodes nanoparticles synthesized by facile, fast, and efficient microwave assisted hydrothermal route
Falqueto, J. B., Clark, A. H., Štefančič, A., Smales, G. J., Vaz, C. A. F., Schuler, A. J., … El Kazzi, M. (2022). High performance doped Li-rich Li1+xMn2-xO4 cathodes nanoparticles synthesized by facile, fast, and efficient microwave assisted hydrothermal route. ACS Applied Energy Materials, 5(7), 8357-8370. https://doi.org/10.1021/acsaem.2c00902
One-step grown carbonaceous germanium nanowires and their application as highly efficient lithium-ion battery anodes
Garcia, A., Biswas, S., McNulty, D., Roy, A., Raha, S., Trabesinger, S., … Holmes, J. D. (2022). One-step grown carbonaceous germanium nanowires and their application as highly efficient lithium-ion battery anodes. ACS Applied Energy Materials, 5(2), 1922-1932. https://doi.org/10.1021/acsaem.1c03404
Influence of water contamination on the SEI formation in Li-ion cells: an operando EQCM-D study
Kitz, P. G., Novák, P., & Berg, E. J. (2020). Influence of water contamination on the SEI formation in Li-ion cells: an operando EQCM-D study. ACS Applied Materials and Interfaces, 12(13), 15934-15942. https://doi.org/10.1021/acsami.0c01642
Multifunctional electrolyte additive for improved interfacial stability in Ni-rich layered oxide full-cells
Pham, H. Q., Mirolo, M., Tarik, M., El Kazzi, M., & Trabesinger, S. (2020). Multifunctional electrolyte additive for improved interfacial stability in Ni-rich layered oxide full-cells. Energy Storage Materials, 33, 216-229. https://doi.org/10.1016/j.ensm.2020.08.026
Volume expansion of amorphous silicon electrodes during potentiostatic lithiation of Li-ion batteries
Schmidt, H., Jerliu, B., Hüger, E., & Stahn, J. (2020). Volume expansion of amorphous silicon electrodes during potentiostatic lithiation of Li-ion batteries. Electrochemistry Communications, 115, 106738 (5 pp.). https://doi.org/10.1016/j.elecom.2020.106738
SnO&lt;sub&gt;2&lt;/sub&gt; model electrode cycled in Li-Ion battery reveals the formation of Li&lt;sub&gt;2&lt;/sub&gt;SnO&lt;sub&gt;3&lt;/sub&gt; and Li&lt;sub&gt;8&lt;/sub&gt;SnO&lt;sub&gt;6&lt;/sub&gt; phases through conversion reactions
Ferraresi, G., Villevieille, C., Czekaj, I., Horisberger, M., Novák, P., & El Kazzi, M. (2018). SnO2 model electrode cycled in Li-Ion battery reveals the formation of Li2SnO3 and Li8SnO6 phases through conversion reactions. ACS Applied Materials and Interfaces, 10(10), 8712-8720. https://doi.org/10.1021/acsami.7b19481
Solid electrolyte interphase (SEI) of water-processed graphite electrodes examined in a 65 mAh full cell configuration
Jeschull, F., Maibach, J., Félix, R., Wohlfahrt-Mehrens, M., Edström, K., Memm, M., & Brandell, D. (2018). Solid electrolyte interphase (SEI) of water-processed graphite electrodes examined in a 65 mAh full cell configuration. ACS Applied Energy Materials, 1(10), 5176-5188. https://doi.org/10.1021/acsaem.8b00608
Electrochemical and chemical modifications of electrode surfaces and interphases for Li-ion batteries
Sun, B., & Berg, E. J. (2018). Electrochemical and chemical modifications of electrode surfaces and interphases for Li-ion batteries. In K. Wandelt (Ed.), Chemistry, molecular sciences and chemical engineering. Encyclopedia of interfacial chemistry. Surface science and electrochemistry (pp. 680-693). https://doi.org/10.1016/B978-0-12-409547-2.13141-5
Elucidation of reaction mechanisms of Ni&lt;sub&gt;2&lt;/sub&gt;SnP in Li-ion and Na-ion systems
Marino, C., Dupré, N., & Villevieille, C. (2017). Elucidation of reaction mechanisms of Ni2SnP in Li-ion and Na-ion systems. Journal of Power Sources, 365, 339-347. https://doi.org/10.1016/j.jpowsour.2017.08.096
Fe and Co methylene diphosphonates as conversion materials for Li-ion batteries
Schmidt, S., Sallard, S., Sheptyakov, D., Nachtegaal, M., Novák, P., & Villevieille, C. (2017). Fe and Co methylene diphosphonates as conversion materials for Li-ion batteries. Journal of Power Sources, 342, 879-885. https://doi.org/10.1016/j.jpowsour.2016.12.090
Investigation of Li-ion solvation in carbonate based electrolytes using near ambient pressure photoemission
El Kazzi, M., Czekaj, I., J. Berg, E., Novák, P., & Brown, M. A. (2016). Investigation of Li-ion solvation in carbonate based electrolytes using near ambient pressure photoemission. Topics in Catalysis, 59(5-7), 628-634. https://doi.org/10.1007/s11244-015-0518-2