| Fragment-based screening targeting an open form of the SARS-CoV-2 main protease binding pocket
Huang, C. Y., Metz, A., Lange, R., Artico, N., Potot, C., Hazemann, J., … Mac Sweeney, A. (2024). Fragment-based screening targeting an open form of the SARS-CoV-2 main protease binding pocket. Acta Crystallographica Section D: Structural Biology, 80, 123-136. https://doi.org/10.1107/S2059798324000329 |
| Structural comparison of (hyper-)thermophilic nitrogenase reductases from three marine <em>Methanococcales</em>
Maslać, N., Cadoux, C., Bolte, P., Murken, F., Gu, W., Milton, R. D., & Wagner, T. (2024). Structural comparison of (hyper-)thermophilic nitrogenase reductases from three marine Methanococcales. FEBS Journal, 291(15), 3454-3480. https://doi.org/10.1111/febs.17148 |
| Protein engineering enables a soakable crystal form of human CDK7 primed for high-throughput crystallography and structure-based drug design
Mukherjee, M., Day, P. J., Laverty, D., Bueren-Calabuig, J. A., Woodhead, A. J., Griffiths-Jones, C., … O'Reilly, M. (2024). Protein engineering enables a soakable crystal form of human CDK7 primed for high-throughput crystallography and structure-based drug design. Structure, 32(8), 1040-1048.e3. https://doi.org/10.1016/j.str.2024.05.011 |
| The mononuclear metal-binding site of Mo-nitrogenase is not required for activity
Cadoux, C., Maslać, N., Di Luzio, L., Ratcliff, D., Gu, W., Wagner, T., & Milton, R. D. (2023). The mononuclear metal-binding site of Mo-nitrogenase is not required for activity. JACS Au, 3(11), 2993-2999. https://doi.org/10.1021/jacsau.3c00567 |
| Crystal structure of a GCN5-related N-acetyltransferase from<em> Lactobacillus curiae</em>
Fleming, J. R., Hauth, F., Hartig, J. S., & Mayans, O. (2023). Crystal structure of a GCN5-related N-acetyltransferase from Lactobacillus curiae. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 79, 217-223. https://doi.org/10.1107/S2053230X2300571X |
| 1-deoxy-D-xylulose-5-phosphate synthase from Pseudomonas <em>aeruginosa </em>and <em>Klebsiella pneumoniae</em> reveals conformational changes upon cofactor binding
Hamid, R., Adam, S., Lacour, A., Monjas, L., Köhnke, J., & Hirsch, A. K. H. (2023). 1-deoxy-D-xylulose-5-phosphate synthase from Pseudomonas aeruginosa and Klebsiella pneumoniae reveals conformational changes upon cofactor binding. Journal of Biological Chemistry, 299(9), 105152 (11 pp.). https://doi.org/10.1016/j.jbc.2023.105152 |
| Probing ion-binding at a protein interface: modulation of protein properties by ionic liquids
Han, Q., Su, Y., Smith, K. M., Binns, J., Drummond, C. J., Darmanin, C., & Greaves, T. L. (2023). Probing ion-binding at a protein interface: modulation of protein properties by ionic liquids. Journal of Colloid and Interface Science, 650, 1393-1405. https://doi.org/10.1016/j.jcis.2023.07.045 |
| Structures of the inhibitory receptor siglec-8 in complex with a high-affinity sialoside analogue and a therapeutic antibody
Lenza, M. P., Atxabal, U., Nycholat, C., Oyenarte, I., Franconetti, A., Quintana, J. I., … Ereño-Orbea, J. (2023). Structures of the inhibitory receptor siglec-8 in complex with a high-affinity sialoside analogue and a therapeutic antibody. JACS Au, 3(1), 204-215. https://doi.org/10.1021/jacsau.2c00592 |
| Benziodarone and 6-hydroxybenziodarone are potent and selective inhibitors of transthyretin amyloidogenesis
Mizuguchi, M., Yokoyama, T., Okada, T., Nakagawa, Y., Fujii, K., Nabeshima, Y., & Toyooka, N. (2023). Benziodarone and 6-hydroxybenziodarone are potent and selective inhibitors of transthyretin amyloidogenesis. Bioorganic and Medicinal Chemistry, 90, 117370 (12 pp.). https://doi.org/10.1016/j.bmc.2023.117370 |
| Small-molecule inhibitors of the m7G-RNA writer METTL1
Nai, F., Flores Espinoza, M. P., Invernizzi, A., Vargas-Rosales, P. A., Bobileva, O., Herok, M., & Caflisch, A. (2023). Small-molecule inhibitors of the m7G-RNA writer METTL1. ACS Bio & Med Chem Au, 4(2), 100-110. https://doi.org/10.1021/acsbiomedchemau.3c00030 |
| Atypical homodimerization revealed by the structure of the <em>(S)</em>-enantioselective haloalkane dehalogenase DmmarA from <em>Mycobacterium marinum</em>
Snajdarova, K., Marques, S. M., Damborsky, J., Bednar, D., & Marek, M. (2023). Atypical homodimerization revealed by the structure of the (S)-enantioselective haloalkane dehalogenase DmmarA from Mycobacterium marinum. Acta Crystallographica Section D: Structural Biology, 79(Pt 11), 956-970. https://doi.org/10.1107/S2059798323006642 |
| Development of [1,2]oxazoloisoindoles tubulin polymerization inhibitors: further chemical modifications and potential therapeutic effects against lymphomas
Barreca, M., Spanò, V., Rocca, R., Bivacqua, R., Abel, A. C., Maruca, A., … Barraja, P. (2022). Development of [1,2]oxazoloisoindoles tubulin polymerization inhibitors: further chemical modifications and potential therapeutic effects against lymphomas. European Journal of Medicinal Chemistry, 243, 114744 (25 pp.). https://doi.org/10.1016/j.ejmech.2022.114744 |
| Structural basis of lipoprotein recognition by the bacterial Lol trafficking chaperone LolA
Kaplan, E., Greene, N. P., Jepson, A. E., & Koronakis, V. (2022). Structural basis of lipoprotein recognition by the bacterial Lol trafficking chaperone LolA. Proceedings of the National Academy of Sciences of the United States of America PNAS, 119(36), e2208662119 (9 pp.). https://doi.org/10.1073/pnas.2208662119 |
| Structure-based design of ligands of the m<sup>6</sup>A-RNA reader YTHDC1
Li, Y., Bedi, R. K., Nai, F., von Roten, V., Dolbois, A., Zálešák, F., … Caflisch, A. (2022). Structure-based design of ligands of the m6A-RNA reader YTHDC1. European Journal of Medicinal Chemistry Reports, 5, 100057 (11 pp.). https://doi.org/10.1016/j.ejmcr.2022.100057 |
| Crystallization systems for the high-resolution structural analysis of tubulin-ligand complexes
Mühlethaler, T., Olieric, N., Ehrhard, V. A., Wranik, M., Standfuss, J., Sharma, A., … Steinmetz, M. O. (2022). Crystallization systems for the high-resolution structural analysis of tubulin-ligand complexes. In H. Inaba (Ed.), Methods in molecular biology: Vol. 2430. Microtubules. Methods and protocols (pp. 349-374). https://doi.org/10.1007/978-1-0716-1983-4_23 |
| Fragment ligands of the m<sup>6</sup>A-RNA reader YTHDF2
Nai, F., Nachawati, R., Zálešák, F., Wang, X., Li, Y., & Caflisch, A. (2022). Fragment ligands of the m6A-RNA reader YTHDF2. ACS Medicinal Chemistry Letters, 13(9), 1500-1509. https://doi.org/10.1021/acsmedchemlett.2c00303 |
| The role of the N-terminal amphipathic helix in bacterial YidC: insights from functional studies, the crystal structure and molecular dynamics simulations
Nass, K. J., Ilie, I. M., Saller, M. J., Driessen, A. J. M., Caflisch, A., Kammerer, R. A., & Li, X. (2022). The role of the N-terminal amphipathic helix in bacterial YidC: insights from functional studies, the crystal structure and molecular dynamics simulations. Biochimica et Biophysica Acta: Biomembranes, 1864(3), 183825 (9 pp.). https://doi.org/10.1016/j.bbamem.2021.183825 |
| Variations on a theme: crystal forms of the amino-acid transporter MhsT
Neumann, C., Focht, D., Trampari, S., Lyons, J. A., & Nissen, P. (2022). Variations on a theme: crystal forms of the amino-acid transporter MhsT. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 78, 297-305. https://doi.org/10.1107/S2053230X22007154 |
| Structure-activity relationship and <em>in silico </em>evaluation of <em>cis-</em> and <em>trans</em>-PCPA-derived inhibitors of LSD1 and LSD2
Niwa, H., Watanabe, C., Sato, S., Harada, T., Watanabe, H., Tabusa, R., … Umehara, T. (2022). Structure-activity relationship and in silico evaluation of cis- and trans-PCPA-derived inhibitors of LSD1 and LSD2. ACS Medicinal Chemistry Letters, 13(9), 1485-1492. https://doi.org/10.1021/acsmedchemlett.2c00294 |
| Structure-based optimization of type III indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors
Röhrig, U. F., Majjigapu, S. R., Vogel, P., Reynaud, A., Pojer, F., Dilek, N., … Zoete, V. (2022). Structure-based optimization of type III indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 37(1), 1773-1811. https://doi.org/10.1080/14756366.2022.2089665 |