Active Filters

  • (-) Keywords = antiferromagnet
Search Results 1 - 16 of 16
  • RSS Feed
Select Page
Experimental progress in Eu(Al,Ga)<sub>4</sub>topological antiferromagnets
Shang, T., Xu, Y., Gao, S., Yang, R., Shiroka, T., & Shi, M. (2025). Experimental progress in Eu(Al,Ga)4topological antiferromagnets. Journal of Physics: Condensed Matter, 37(1), 013002 (32 pp.). https://doi.org/10.1088/1361-648X/ad7ac0
Tunable magnetism in atomically thin itinerant antiferromagnet with room-temperature ferromagnetic order
Lu, L., Wang, Q., Duan, H., Zhu, K., Hu, T., Ma, Y., … Tian, M. (2024). Tunable magnetism in atomically thin itinerant antiferromagnet with room-temperature ferromagnetic order. Nano Letters, 24(20), 5984-5992. https://doi.org/10.1021/acs.nanolett.4c00472
Temperature dependent spin gap in multiferroic 2D-XY antiferromagnet Ba<sub>2</sub>CoGe<sub>2</sub>O<sub>7</sub> under applied magnetic field
Dutta, R., Thoma, H., Roessli, B., Kocsis, V., Tokunaga, Y., Taguchi, Y., … Hutanu, V. (2023). Temperature dependent spin gap in multiferroic 2D-XY antiferromagnet Ba2CoGe2O7 under applied magnetic field. In 2023 IEEE International Magnetic Conference, INTERMAG (p. 2 pp.). https://doi.org/10.1109/INTERMAGShortPapers58606.2023.10228421
Temperature dependent spin gap in multiferroic 2D-XY antiferromagnet Ba<sub>2</sub>CoGe<sub>2</sub>O<sub>7</sub> under applied magnetic fields
Dutta, R., Thoma, H., Roessli, B., Kocsis, V., Tokunaga, Y., Taguchi, Y., … Hutanu, V. (2023). Temperature dependent spin gap in multiferroic 2D-XY antiferromagnet Ba2CoGe2O7 under applied magnetic fields. IEEE Transactions on Magnetics, 59(11), 1300604 (4 pp.). https://doi.org/10.1109/TMAG.2023.3284597
Large exchange bias induced by polycrystalline MN&lt;sub&gt;3&lt;/sub&gt;Ga antiferromagnetic films with controlled layer thickness
Wu, H., Sudoh, I., Xu, R., Si, W., Vaz, C. A. F., Kim, J. Y., … Hirohata, A. (2018). Large exchange bias induced by polycrystalline MN3Ga antiferromagnetic films with controlled layer thickness. Journal of Physics D: Applied Physics, 51(21), 215003 (8 pp.). https://doi.org/10.1088/1361-6463/aabd8e
Magnetic phases in Sr<sub>1-<em>x</em></sub>Ca<em><sub>x</sub></em>Co<sub>2</sub>P<sub>2</sub> studied by <em>µ</em><sup>+</sup>SR
Sugiyama, J., Nozaki, H., Harada, M., Umegaki, I., Higuchi, Y., Kazutoshi, M., … Mansson, M. (2015). Magnetic phases in Sr1-xCaxCo2P2 studied by µ+SR. In A. Labarta (Ed.), Physics procedia: Vol. 75. 20th international conference on magnetism, ICM 2015 (pp. 426-434). https://doi.org/10.1016/j.phpro.2015.12.052
Comparative muon-spin rotation and relaxation study on the zigzag chain compounds NaMN<sub>2</sub>O<sub>4</sub> and Li<sub>0.92</sub>MN<sub>2</sub>O<sub>4</sub>
Sugiyama, J., Ikedo, Y., Ofer, O., Månsson, M., Ansaldo, E. J., Brewer, J. H., … Takayama-Muromachi, E. (2009). Comparative muon-spin rotation and relaxation study on the zigzag chain compounds NaMN2O4 and Li0.92MN2O4. Journal of the Physical Society of Japan, 78(8), 084715 (9 pp.). https://doi.org/10.1143/JPSJ.78.084715
Static magnetic order on the triangular lattice in Li<sub><em>x</em></sub>NiO<sub>2</sub> with <em>x</em> ≤ 1
Sugiyama, J., Mukai, K., Ikedo, Y., Nozaki, H., Russo, P. L., Andreica, D., … Ohzuku, T. (2009). Static magnetic order on the triangular lattice in LixNiO2 with x ≤ 1. Physica B: Condensed Matter, 404(5-7), 663-666. https://doi.org/10.1016/j.physb.2008.11.102
Magnetic structure of Tm&lt;sub&gt;5&lt;/sub&gt;Rh&lt;sub&gt;4&lt;/sub&gt;Ge&lt;sub&gt;10&lt;/sub&gt;
Penc, B., Wawrzyńska, E., Keller, L., & Szytuła, A. (2008). Magnetic structure of Tm5Rh4Ge10. Journal of Magnetism and Magnetic Materials, 320(1-2), L1-L4. https://doi.org/10.1016/j.jmmm.2007.05.014
Chiral quantum excitations in the anisotropic antiferromagnet CsCoBr<sub>3</sub>
Braun, H. B., Kulda, J., Roessli, B., Visser, D., Krämer, K. W., Güdel, H. U., & Böni, P. (2007). Chiral quantum excitations in the anisotropic antiferromagnet CsCoBr3. Journal of Magnetism and Magnetic Materials, 310(2 Part 2), 1194-1196. https://doi.org/10.1016/j.jmmm.2006.10.307
Thermodynamic and magnetic properties of the layered triangular magnet NaNiO<sub>2</sub>
Baker, P. J., Lancaster, T., Blundell, S. J., Brooks, M. L., Hayes, W., Prabhakaran, D., & Pratt, F. L. (2006). Thermodynamic and magnetic properties of the layered triangular magnet NaNiO2. Physica B: Condensed Matter, 374-375, 47-50. https://doi.org/10.1016/j.physb.2005.11.162
X-ray diffractometer combining synchrotron radiation and pulsed magnetic fields up to 40 T
Narumi, Y., Kindo, K., Katsumata, K., Kawauchi, M., Broennimann, C., Staub, U., … Kitamura, H. (2006). X-ray diffractometer combining synchrotron radiation and pulsed magnetic fields up to 40 T. Journal of Synchrotron Radiation, 13(3), 271-274. https://doi.org/10.1107/S0909049506006972
Electrical transport and magnetic properties of CeGe
Marcano, N., Espeso, J. I., Noakes, D. R., Kalvius, G. M., & Gómez Sal, J. C. (2005). Electrical transport and magnetic properties of CeGe. Physica B: Condensed Matter, 359-361, 269-271. https://doi.org/10.1016/j.physb.2005.01.067
Dynamics of the internal field in RB&lt;sub&gt;12&lt;/sub&gt; (R = Er, Yb, Lu)
Kalvius, G. M., Noakes, D. R., Marcano, N., Wäppling, R., Iga, F., & Takabatake, T. (2003). Dynamics of the internal field in RB12 (R = Er, Yb, Lu). Physica B: Condensed Matter, 326(1-4), 398-402. https://doi.org/10.1016/S0921-4526(02)01644-7
μSR studies of the heavy fermion compound Ce<sub>7</sub>Ni<sub>3</sub>
Kratzer, A., Noakes, D. R., Kalvius, G. M., Schreier, E., Wäppling, R., Umeo, K., … Löhneysen, Hv. (2002). μSR studies of the heavy fermion compound Ce7Ni3. Physica B: Condensed Matter, 312-313, 469-471. https://doi.org/10.1016/S0921-4526(01)01172-3
μSR magnetic response of CeCuSn
Kalvius, G. M., Kratzer, A., Nakotte, H., Noakes, D. R., Stronach, C. E., & Wäppling, R. (2000). μSR magnetic response of CeCuSn. Physica B: Condensed Matter, 289-290, 252-255. https://doi.org/10.1016/S0921-4526(00)00386-0