Active Filters

  • (-) Keywords = antitumor agents
Search Results 1 - 11 of 11
  • RSS Feed
Select Page
Structure-activity relationships, biological evaluation and structural studies of novel pyrrolonaphthoxazepines as antitumor agents
Brindisi, M., Ulivieri, C., Alfano, G., Gemma, S., de Asís Balaguer, F., Khan, T., … Brogi, S. (2019). Structure-activity relationships, biological evaluation and structural studies of novel pyrrolonaphthoxazepines as antitumor agents. European Journal of Medicinal Chemistry, 162, 290-320. https://doi.org/10.1016/j.ejmech.2018.11.004
Targeted synthesis of complex spiro[3<em>H</em>-indole-3,2'-pyrrolidin]-2(1<em>H</em>)-ones by intramolecular cyclization of azomethine ylides: highly potent MDM2-p53 inhibitors
Gollner, A., Weinstabl, H., Fuchs, J. E., Rudolph, D., Garavel, G., Hofbauer, K. S., … McConnell, D. B. (2019). Targeted synthesis of complex spiro[3H-indole-3,2'-pyrrolidin]-2(1H)-ones by intramolecular cyclization of azomethine ylides: highly potent MDM2-p53 inhibitors. ChemMedChem, 14(1), 88-93. https://doi.org/10.1002/cmdc.201800617
Functionalization of ruthenium(II)(ų<sup>6</sup>-<em>p</em>-cymene)(3-hydroxy-2-pyridone) complexes with (thio)morpholine: synthesis and bioanalytical studies
Hanif, M., Meier, S. M., Adhireksan, Z., Henke, H., Martic, S., Movassaghi, S., … Hartinger, C. G. (2017). Functionalization of ruthenium(II)(ų6-p-cymene)(3-hydroxy-2-pyridone) complexes with (thio)morpholine: synthesis and bioanalytical studies. ChemPlusChem, 82(6), 841-847. https://doi.org/10.1002/cplu.201700050
Targeted delivery of proteasome inhibitors to somatostatin-receptor-expressing cancer cells by octreotide conjugation
Beck, P., Cui, H., Hegemann, J. D., Marahiel, M. A., Krüger, A., & Groll, M. (2015). Targeted delivery of proteasome inhibitors to somatostatin-receptor-expressing cancer cells by octreotide conjugation. ChemMedChem, 10(12), 1969-1973. https://doi.org/10.1002/cmdc.201500449
Discovery of novel allosteric non-bisphosphonate inhibitors of farnesyl pyrophosphate synthase by integrated lead finding
Marzinzik, A. L., Amstutz, R., Bold, G., Bourgier, E., Cotesta, S., Glickman, J. F., … Jahnke, W. (2015). Discovery of novel allosteric non-bisphosphonate inhibitors of farnesyl pyrophosphate synthase by integrated lead finding. ChemMedChem, 10(11), 1884-1891. https://doi.org/10.1002/cmdc.201500338
Insights into the bioactivity of mensacarcin and epoxide formation by MsnO8
Maier, S., Pflüger, T., Loesgen, S., Asmus, K., Brötz, E., Paululat, T., … Bechthold, A. (2014). Insights into the bioactivity of mensacarcin and epoxide formation by MsnO8. ChemBioChem, 15(5), 749-756. https://doi.org/10.1002/cbic.201300704
Binding of a designed anti-cancer drug to the central cavity of an RNA three-way junction
Phongtongpasuk, S., Paulus, S., Schnabl, J., Sigel, R. K. O., Spingler, B., Hannon, M. J., & Freisinger, E. (2013). Binding of a designed anti-cancer drug to the central cavity of an RNA three-way junction. Angewandte Chemie International Edition, 52(44), 11513-11516. https://doi.org/10.1002/anie.201305079
Structure-guided development of selective RabGGTase inhibitors
Bon, R. S., Guo, Z., Stigter, E. A., Wetzel, S., Menninger, S., Wolf, A., … Waldmann, H. (2011). Structure-guided development of selective RabGGTase inhibitors. Angewandte Chemie International Edition, 50(21), 4957-4961. https://doi.org/10.1002/anie.201101210
An old NSAID revisited: crystal structure of aldose reductase in complex with sulindac at 1.0 Å supports a novel mechanism for its anticancer and antiproliferative effects
Steuber, H. (2011). An old NSAID revisited: crystal structure of aldose reductase in complex with sulindac at 1.0 Å supports a novel mechanism for its anticancer and antiproliferative effects. ChemMedChem, 6(12), 2155-2157. https://doi.org/10.1002/cmdc.201100374
Crystal structure of a cisplatin-(1,3-GTG) cross-link inside DNA polymerase η
Reißner, T., Schneider, S., Schorr, S., & Carell, T. (2010). Crystal structure of a cisplatin-(1,3-GTG) cross-link inside DNA polymerase η. Angewandte Chemie International Edition, 49(17), 3077-3080. https://doi.org/10.1002/anie.201000414
Similar biological activities of two isostructural ruthenium and osmium complexes
Maksimoska, J., Williams, D. S., Atilla-Gokcumen, G. E., Smalley, K. S. M., Carroll, P. J., Webster, R. D., … Meggers, E. (2008). Similar biological activities of two isostructural ruthenium and osmium complexes. Chemistry: A European Journal, 14(16), 4816-4822. https://doi.org/10.1002/chem.200800294