Active Filters

  • (-) Keywords = cement
Search Results 1 - 20 of 32
Select Page
Characterisation of iron-rich cementitious materials
Baral, A., Pesce, C., Yorkshire, A. S., Zhakiyeva, Z., Snellings, R., Hanein, T., … Peys, A. (2024). Characterisation of iron-rich cementitious materials. Cement and Concrete Research, 177, 107419 (26 pp.). https://doi.org/10.1016/j.cemconres.2023.107419
Coupling of porosity and diffusive transport in highly reactive systems: open issues of reactive transport modelling
Jenni, A., Gimmi, T., & Mäder, U. (2024). Coupling of porosity and diffusive transport in highly reactive systems: open issues of reactive transport modelling. Applied Geochemistry, 170, 106076 (12 pp.). https://doi.org/10.1016/j.apgeochem.2024.106076
Cements and concretes materials characterisation using machine-learning-based reconstruction and 3D quantitative mineralogy via X-ray microscopy
Mitchell, R. L., Holwell, A., Torelli, G., Provis, J., Selvaranjan, K., Geddes, D., … Kearney, S. (2024). Cements and concretes materials characterisation using machine-learning-based reconstruction and 3D quantitative mineralogy via X-ray microscopy. Journal of Microscopy, 29, 137-145. https://doi.org/10.1111/jmi.13278
Editorial: 2022 Retrospective: structural materials
Provis, J. L., Putra Jaya, R., Napoli, A., & Kanellopoulos, A. (2024). Editorial: 2022 Retrospective: structural materials. Frontiers in Materials, 11, 1401396 (2 pp.). https://doi.org/10.3389/fmats.2024.1401396
Sorption of <sup>32</sup>Si and <sup>45</sup>Ca by isotopic exchange during recrystallisation of cement phases
Tits, J., Curti, E., Laube, A., Wieland, E., & Provis, J. L. (2024). Sorption of 32Si and 45Ca by isotopic exchange during recrystallisation of cement phases. Applied Geochemistry, 173, 106117 (15 pp.). https://doi.org/10.1016/j.apgeochem.2024.106117
Preconditions for achieving carbon neutrality in cement production through CCUS
Gallego Dávila, J., Sacchi, R., & Pizzol, M. (2023). Preconditions for achieving carbon neutrality in cement production through CCUS. Journal of Cleaner Production, 425, 138935 (11 pp.). https://doi.org/10.1016/j.jclepro.2023.138935
Speciation of iron(II/III) at the iron-cement interface: a review
Wieland, E., Miron, G. D., Ma, B., Geng, G., & Lothenbach, B. (2023). Speciation of iron(II/III) at the iron-cement interface: a review. Materials and Structures, 56(2), 31 (24 pp.). https://doi.org/10.1617/s11527-023-02115-x
Effect of alkali hydroxide on calcium silicate hydrate (C-S-H)
Yan, Y., Lothenbach, B., Miron, G. D., & Scrivener, K. (2022). Effect of alkali hydroxide on calcium silicate hydrate (C-S-H) (p. (6 pp.). Presented at the NUWCEM 2022 - international symposium on cement-based materials for nuclear wastes. .
Effect of alkali hydroxide on calcium silicate hydrate (C-S-H)
Yan, Y., Yang, S. Y., Miron, G. D., Collings, I. E., L'Hôpital, E., Skibsted, J., … Lothenbach, B. (2022). Effect of alkali hydroxide on calcium silicate hydrate (C-S-H). Cement and Concrete Research, 151, 106636 (22 pp.). https://doi.org/10.1016/j.cemconres.2021.106636
Fabrication and characterization of ice templated membrane supports from Portland cement
Abdullayev, A., Kamm, P. H., Bekheet, M. F., & Gurlo, A. (2020). Fabrication and characterization of ice templated membrane supports from Portland cement. Membranes, 10(5), 93 (13 pp.). https://doi.org/10.3390/membranes10050093
The effect of sodium hydroxide on Al uptake by calcium silicate hydrates (C-S-H)
Barzgar, S., Lothenbach, B., Tarik, M., Di Giacomo, A., & Ludwig, C. (2020). The effect of sodium hydroxide on Al uptake by calcium silicate hydrates (C-S-H). Journal of Colloid and Interface Science, 572, 246-256. https://doi.org/10.1016/j.jcis.2020.03.057
Should we neglect cement carbonation in life cycle inventory databases?
Sacchi, R., & Bauer, C. (2020). Should we neglect cement carbonation in life cycle inventory databases? International Journal of Life Cycle Assessment, 25, 1532-1544. https://doi.org/10.1007/s11367-020-01776-y
Cemdata18: a chemical thermodynamic database for hydrated Portland cements and alkali-activated materials
Lothenbach, B., Kulik, D. A., Matschei, T., Balonis, M., Baquerizo, L., Dilnesa, B., … Myers, R. J. (2019). Cemdata18: a chemical thermodynamic database for hydrated Portland cements and alkali-activated materials. Cement and Concrete Research, 115, 472-506. https://doi.org/10.1016/j.cemconres.2018.04.018
Interaction of Fe(II, III) with cement phases in anoxic conditions
Mancini, A., Wieland, E., Lothenbach, B., Dähn, R., & Wehrli, B. (2018). Interaction of Fe(II, III) with cement phases in anoxic conditions (p. (4 pp.). Presented at the NUWCEM 2018. Cement-based materials for nuclear wastes. .
Sorption and diffusion studies with low molecular weight organic compounds in cementitious systems
Wieland, E., Jakob, A., Tits, J., Lothenbach, B., & Kunz, D. (2016). Sorption and diffusion studies with low molecular weight organic compounds in cementitious systems. Applied Geochemistry, 67, 101-117. https://doi.org/10.1016/j.apgeochem.2016.01.009
Quantification of water content across a cement-clay interface using high resolution neutron radiography
Shafizadeh, A., Gimmi, T., Van Loon, L., Kaestner, A., Lehmann, E., Maeder, U. K., & Churakov, S. V. (2015). Quantification of water content across a cement-clay interface using high resolution neutron radiography. In E. H. Lehmann, A. P. Kaestner, & D. Mannes (Eds.), Physics procedia: Vol. 69. Proceedings of the 10th world conference on neutron radiography (WCNR-10) Grindelwald, Switzerland October 5-10, 2014 (pp. 516-523). https://doi.org/10.1016/j.phpro.2015.07.073
X-ray micro-diffraction studies of heterogeneous interfaces between cementitious materials and geological formations
Dähn, R., Popov, D., Schaub, P., Pattison, P., Grolimund, D., Mäder, U., … Wieland, E. (2014). X-ray micro-diffraction studies of heterogeneous interfaces between cementitious materials and geological formations. Physics and Chemistry of the Earth, 70-71, 96-103. https://doi.org/10.1016/j.pce.2013.10.010
Influence of the redox state on the neptunium sorption under alkaline conditions: batch sorption studies on titanium dioxide and calcium silicate hydrates
Tits, J., Gaona, X., Laube, A., & Wieland, E. (2014). Influence of the redox state on the neptunium sorption under alkaline conditions: batch sorption studies on titanium dioxide and calcium silicate hydrates. Radiochimica Acta, 102(5), 385-400. https://doi.org/10.1515/ract-2013-2151
Competition behaviour of metal uptake in cementitious systems: an XRD and EXAFS investigation of Nd- and Zn-loaded 11 Å tobermorite
Vespa, M., Dähn, R., & Wieland, E. (2014). Competition behaviour of metal uptake in cementitious systems: an XRD and EXAFS investigation of Nd- and Zn-loaded 11 Å tobermorite. Physics and Chemistry of the Earth, 70-71, 32-38. https://doi.org/10.1016/j.pce.2014.01.001
EXAFS investigation on U(VI) immobilization in hardened cement paste: influence of experimental conditions on speciation
Macé, N., Wieland, E., Dähn, R., Tits, J., & Scheinost, A. C. (2013). EXAFS investigation on U(VI) immobilization in hardened cement paste: influence of experimental conditions on speciation. Radiochimica Acta, 101(6), 379-389. https://doi.org/10.1524/ract.2013.2024