Active Filters

  • (-) Keywords = chemically amplified resist
Search Results 1 - 7 of 7
  • RSS Feed
Select Page
Studying resist performance for contact holes printing using EUV interference lithography
Wang, X., Tseng, L. T., Kazazis, D., Tasdemir, Z., Vockenhuber, M., Mochi, I., & Ekinci, Y. (2019). Studying resist performance for contact holes printing using EUV interference lithography. Journal of Micro/Nanolithography, MEMS, and MOEMS, 18(1), 013501 (11 pp.). https://doi.org/10.1117/1.JMM.18.1.013501
Studying resist performance for contact holes printing using EUV interference lithography
Wang, X., Tseng, L. T., Kazazis, D., Tasdemir, Z., Vockenhuber, M., Mochi, I., & Ekinci, Y. (2018). Studying resist performance for contact holes printing using EUV interference lithography. In K. G. Ronse, E. Hendrickx, P. P. Naulleau, P. A. Gargini, & T. Itani (Eds.), Proceedings of SPIE: Vol. 10809. International conference on extreme ultraviolet lithography 2018 (p. 108091Z (13 pp.). https://doi.org/10.1117/12.2501949
<em>Photosensitized Chemically Amplified Resist<sup>TM</sup></em> (PSCAR<sup>TM</sup>) 2.0 for high throughput and high resolution EUV lithography: dual photosensitization of acid generation and quencher decomposition b
Nagahara, S., Carcasi, M., Shiraishi, G., Nakagawa, H., Dei, S., Shiozawa, T., … Tagawa, S. (2017). Photosensitized Chemically Amplified ResistTM (PSCARTM) 2.0 for high throughput and high resolution EUV lithography: dual photosensitization of acid generation and quencher decomposition by flood exposure. In C. K. Hohle (Ed.), Proceedings of SPIE: Vol. 10146. Advances in patterning materials and processes XXXIV (p. 101460G (14 pp.). https://doi.org/10.1117/12.2258217
Towards 11 nm half-pitch resolution for a negative-tone chemically amplified molecular resist platform for EUV lithography
Frommhold, A., McClelland, A., Yang, D., Palmer, R. E., Roth, J., Ekinci, Y., … Robinson, A. P. G. (2015). Towards 11 nm half-pitch resolution for a negative-tone chemically amplified molecular resist platform for EUV lithography. In T. I. Wallow & C. K. Hohle (Eds.), Proceedings of SPIE: Vol. 9425. Advances in patterning materials and processes XXXII (p. 942504 (8 pp.). https://doi.org/10.1117/12.2085672
Toward 10 nm half-pitch in EUV lithography: results on resist screening and pattern collapse mitigation techniques
Kulmala, T. S., Vockenhuber, M., Buitrago, E., Fallica, R., & Ekinci, Y. (2015). Toward 10 nm half-pitch in EUV lithography: results on resist screening and pattern collapse mitigation techniques. In O. R. Wood II & E. M. Panning (Eds.), Proceedings of SPIE: Vol. 9422. Extreme ultraviolet (EUV) lithography VI (p. 942204 (12 pp.). https://doi.org/10.1117/12.2085936
Toward 10 nm half-pitch in extreme ultraviolet lithography: results on resist screening and pattern collapse mitigation techniques
Kulmala, T. S., Vockenhuber, M., Buitrago, E., Fallica, R., & Ekinci, Y. (2015). Toward 10 nm half-pitch in extreme ultraviolet lithography: results on resist screening and pattern collapse mitigation techniques. Journal of Micro/Nanolithography, MEMS, and MOEMS, 14(3), 033507 (9 pp.). https://doi.org/10.1117/1.JMM.14.3.033507
Optimization of fullerene-based negative tone chemically amplified fullerene resist for extreme ultraviolet lithography
Frommhold, A., Yang, D. X., McClelland, A., Xue, X., Ekinci, Y., Palmer, R. E., & Robinson, A. P. G. (2014). Optimization of fullerene-based negative tone chemically amplified fullerene resist for extreme ultraviolet lithography. In T. I. Wallow & C. K. Hohle (Eds.), Proceedings of SPIE: Vol. 9051. Advances in patterning materials and processes XXXI (p. 905119 (9 pp.). https://doi.org/10.1117/12.2046268