Active Filters

  • (-) Keywords = contact angle
Search Results 1 - 11 of 11
  • RSS Feed
Select Page
A contact angle investigation of the surface properties of selected proton-conducting radiation-grafted membranes
Brack, H. P., Wyler, M., Peter, G., & Scherer, G. G. (2003). A contact angle investigation of the surface properties of selected proton-conducting radiation-grafted membranes. Journal of Membrane Science, 214(1), 1-19. https://doi.org/10.1016/S0376-7388(02)00390-3
A new contact line treatment for a conservative level set method
Sato, Y., & Ničeno, B. (2012). A new contact line treatment for a conservative level set method. Journal of Computational Physics, 231(10), 3887-3895. https://doi.org/10.1016/j.jcp.2012.01.034
Adsorption of azacrown ethers at solid-liquid interface. Contact angle and neutron reflectivity study
Wojciechowski, K., Brzozowska, A., Cap, S., Rzodkiewicz, W., & Gutberlet, T. (2009). Adsorption of azacrown ethers at solid-liquid interface. Contact angle and neutron reflectivity study. Applied Surface Science, 256(1), 274-279. https://doi.org/10.1016/j.apsusc.2009.08.014
Characterisation of fuel cell membranes as a function of drying by means of contact angle measurements
Brack, H. P., Slaski, M., Gubler, L., Scherer, G. G., Alkan, S., & Wokaun, A. (2004). Characterisation of fuel cell membranes as a function of drying by means of contact angle measurements. Fuel Cells, 4(3), 141-146. https://doi.org/10.1002/fuce.200400018
Drying of mucilage causes water repellency in the rhizosphere of maize: measurements and modelling
Ahmed, M. A., Kroener, E., Benard, P., Zarebanadkouki, M., Kaestner, A., & Carminati, A. (2016). Drying of mucilage causes water repellency in the rhizosphere of maize: measurements and modelling. Plant and Soil, 407(1-2), 161-171. https://doi.org/10.1007/s11104-015-2749-1
Is the rhizosphere temporarily water repellent?
Moradi, A. B., Carminati, A., Lamparter, A., Woche, S. K., Bachmann, J., Vetterlein, D., … Oswald, S. E. (2012). Is the rhizosphere temporarily water repellent? Vadose Zone Journal, 11(3). https://doi.org/10.2136/vzj2011.0120
Modeling and synchrotron imaging of droplet detachment in gas channels of polymer electrolyte fuel cells
Andersson, M., Mularczyk, A., Lamibrac, A., Beale, S. B., Eller, J., Lehnert, W., & Büchi, F. N. (2018). Modeling and synchrotron imaging of droplet detachment in gas channels of polymer electrolyte fuel cells. Journal of Power Sources, 404, 159-171. https://doi.org/10.1016/j.jpowsour.2018.10.021
On the role of wetting, structure width, and flow characteristics in polymer replication on micro- and nanoscale
Rytka, C., Opara, N., Andersen, N. K., Kristiansen, P. M., & Neyer, A. (2016). On the role of wetting, structure width, and flow characteristics in polymer replication on micro- and nanoscale. Macromolecular Materials and Engineering, 301(5), 597-609. https://doi.org/10.1002/mame.201500350
Shape control of polymer reflow structures fabricated by nanoimprint lithography
Schift, H., Spreu, C., Schleunitz, A., & Lee, J. (2011). Shape control of polymer reflow structures fabricated by nanoimprint lithography. Microelectronic Engineering, 88(1), 87-92. https://doi.org/10.1016/j.mee.2010.08.029
Variation in leaf wettability traits along a tropical montane elevation gradient
Goldsmith, G. R., Bentley, L. P., Shenkin, A., Salinas, N., Blonder, B., Martin, R. E., … Malhi, Y. (2017). Variation in leaf wettability traits along a tropical montane elevation gradient. New Phytologist, 214(3), 989-1001. https://doi.org/10.1111/nph.14121
Water percolation through the root-soil interface
Benard, P., Kroener, E., Vontobel, P., Kaestner, A., & Carminati, A. (2016). Water percolation through the root-soil interface. Advances in Water Resources, 95, 190-198. https://doi.org/10.1016/j.advwatres.2015.09.014