Active Filters

  • (-) Keywords = covalent inhibitor
Search Results 1 - 8 of 8
  • RSS Feed
Select Page
Structure-activity relationship study of THZ531 derivatives enables the discovery of BSJ-01-175 as a dual CDK12/13 covalent inhibitor with efficacy in Ewing sarcoma
Jiang, B., Jiang, J., Kaltheuner, I. H., Iniguez, A. B., Anand, K., Ferguson, F. M., … Gray, N. S. (2021). Structure-activity relationship study of THZ531 derivatives enables the discovery of BSJ-01-175 as a dual CDK12/13 covalent inhibitor with efficacy in Ewing sarcoma. European Journal of Medicinal Chemistry, 221, 113481 (16 pp.). https://doi.org/10.1016/j.ejmech.2021.113481
The novel potent TEAD inhibitor, K-975, inhibits YAP1/TAZ-TEAD protein-protein interactions and exerts an anti-tumor effect on malignant pleural mesothelioma
Kaneda, A., Seike, T., Danjo, T., Nakajima, T., Otsubo, N., Yamaguchi, D., … Mori, K. (2020). The novel potent TEAD inhibitor, K-975, inhibits YAP1/TAZ-TEAD protein-protein interactions and exerts an anti-tumor effect on malignant pleural mesothelioma. American Journal of Cancer Research, 10(12), 4399-4415.
Covalent inhibition of histone deacetylase 8 by 3,4-dihydro-2H-pyrimido[1,2-c][1,3]benzothiazin-6-imine
Muth, M., Jänsch, N., Kopranovic, A., Krämer, A., Wössner, N., Jung, M., … Meyer-Almes, F. J. (2019). Covalent inhibition of histone deacetylase 8 by 3,4-dihydro-2H-pyrimido[1,2-c][1,3]benzothiazin-6-imine. Biochimica et Biophysica Acta: General Subjects, 1863(3), 577-585. https://doi.org/10.1016/j.bbagen.2019.01.001
Design of potent and selective covalent inhibitors of Bruton's tyrosine kinase targeting an inactive conformation
Pulz, R., Angst, D., Dawson, J., Gessier, F., Gutmann, S., Hersperger, R., … Cenni, B. (2019). Design of potent and selective covalent inhibitors of Bruton's tyrosine kinase targeting an inactive conformation. ACS Medicinal Chemistry Letters, 10(10), 1467-1472. https://doi.org/10.1021/acsmedchemlett.9b00317
Structure-based design and synthesis of macrocyclic human rhinovirus 3C protease inhibitors
Namoto, K., Sirockin, F., Sellner, H., Wiesmann, C., Villard, F., Moreau, R. J., … Farady, C. J. (2018). Structure-based design and synthesis of macrocyclic human rhinovirus 3C protease inhibitors. Bioorganic and Medicinal Chemistry Letters, 28(5), 906-909. https://doi.org/10.1016/j.bmcl.2018.01.064
Crystal structure of cathepsin A, a novel target for the treatment of cardiovascular diseases
Schreuder, H. A., Liesum, A., Kroll, K., Böhnisch, B., Buning, C., Ruf, S., & Sadowski, T. (2014). Crystal structure of cathepsin A, a novel target for the treatment of cardiovascular diseases. Biochemical and Biophysical Research Communications, 445(2), 451-456. https://doi.org/10.1016/j.bbrc.2014.02.014
Dipeptidyl nitrile inhibitors of Cathepsin L
Asaad, N., Bethel, P. A., Coulson, M. D., Dawson, J. E., Ford, S. J., Gerhardt, S., … Steinbacher, S. (2009). Dipeptidyl nitrile inhibitors of Cathepsin L. Bioorganic and Medicinal Chemistry Letters, 19(15), 4280-4283. https://doi.org/10.1016/j.bmcl.2009.05.071
Design of selective Cathepsin inhibitors
Bethel, P. A., Gerhardt, S., Jones, E. V., Kenny, P. W., Karoutchi, G. I., Morley, A. D., … Steinbacher, S. (2009). Design of selective Cathepsin inhibitors. Bioorganic and Medicinal Chemistry Letters, 19(16), 4622-4625. https://doi.org/10.1016/j.bmcl.2009.06.090