Active Filters

  • (-) Keywords = deactivation
Search Results 1 - 11 of 11
  • RSS Feed
Select Page
Effect of Pt particle size and phosphorous addition on furfural hydrogenation over Pt/Al<sub>2</sub>O<sub>3</sub>
Agote-Arán, M., Alijani, S., Coffano, C., Villa, A., & Ferri, D. (2021). Effect of Pt particle size and phosphorous addition on furfural hydrogenation over Pt/Al2O3. Catalysis Letters. https://doi.org/10.1007/s10562-021-03685-7
Demonstrating direct methanation of real biogas in a fluidised bed reactor
Witte, J., Calbry-Muzyka, A., Wieseler, T., Hottinger, P., Biollaz, S. M. A., & Schildhauer, T. J. (2019). Demonstrating direct methanation of real biogas in a fluidised bed reactor. Applied Energy, 240, 359-371. https://doi.org/10.1016/j.apenergy.2019.01.230
Low number concentration of ice nucleating particles in an aged smoke plume
Conen, F., Bukowiecki, N., Gysel, M., Steinbacher, M., Fischer, A., & Reimann, S. (2018). Low number concentration of ice nucleating particles in an aged smoke plume. Quarterly Journal of the Royal Meteorological Society, 144(715), 1991-1994. https://doi.org/10.1002/qj.3312
Structural changes in deactivated fluid catalytic cracking catalysts determined by electron microscopy
Krumeich, F., Ihli, J., Shu, Y., Cheng, W. C., & van Bokhoven, J. A. (2018). Structural changes in deactivated fluid catalytic cracking catalysts determined by electron microscopy. ACS Catalysis, 8(5), 4591-4599. https://doi.org/10.1021/acscatal.8b00649
Visualization of structural changes during deactivation and regeneration of FAU zeolite for catalytic fast pyrolysis of lignin using NMR and electron microscopy techniques
Ma, Z., Ghosh, A., Asthana, N., & van Bokhoven, J. (2018). Visualization of structural changes during deactivation and regeneration of FAU zeolite for catalytic fast pyrolysis of lignin using NMR and electron microscopy techniques. ChemCatChem, 10(19), 4431-4437. https://doi.org/10.1002/cctc.201800670
Deactivation and regeneration of sulfonated carbon catalysts in hydrothermal reaction environments
Scholz, D., Kröcher, O., & Vogel, F. (2018). Deactivation and regeneration of sulfonated carbon catalysts in hydrothermal reaction environments. ChemSusChem, 11(13), 2189-2201. https://doi.org/10.1002/cssc.201800678
Design of stable Ni/ZrO&lt;sub&gt;2&lt;/sub&gt; catalysts for dry reforming of methane
Lou, Y., Steib, M., Zhang, Q., Tiefenbacher, K., Horváth, A., Jentys, A., … Lercher, J. A. (2017). Design of stable Ni/ZrO2 catalysts for dry reforming of methane. Journal of Catalysis, 356, 147-156. https://doi.org/10.1016/j.jcat.2017.10.009
Deactivation aspects of methane oxidation catalysts based on palladium and ZSM-5
Petrov, A. W., Ferri, D., Tarik, M., Kröcher, O., & van Bokhoven, J. A. (2017). Deactivation aspects of methane oxidation catalysts based on palladium and ZSM-5. Topics in Catalysis, 60(1-2), 123-130. https://doi.org/10.1007/s11244-016-0724-6
Deactivation and regeneration of H-USY zeolite during lignin catalytic fast pyrolysis
Ma, Z., & van Bokhoven, J. A. (2012). Deactivation and regeneration of H-USY zeolite during lignin catalytic fast pyrolysis. ChemCatChem, 4(12), 2036-2044. https://doi.org/10.1002/cctc.201200401
Hydrothermal deactivation of Fe-ZSM-5 catalysts for the selective catalytic reduction of NO with NH&lt;sub&gt;3&lt;/sub&gt;
Brandenberger, S., Kröcher, O., Casapu, M., Tissler, A., & Althoff, R. (2011). Hydrothermal deactivation of Fe-ZSM-5 catalysts for the selective catalytic reduction of NO with NH3. Applied Catalysis B: Environmental, 101(3-4), 649-659. https://doi.org/10.1016/j.apcatb.2010.11.006
Sulphur poisoning of Ni catalysts in the SNG production from biomass: A TPO/XPS/XAS study
Struis, R. P. W. J., Schildhauer, T. J., Czekaj, I., Janousch, M., Biollaz, S. M. A., & Ludwig, C. (2009). Sulphur poisoning of Ni catalysts in the SNG production from biomass: A TPO/XPS/XAS study. Applied Catalysis A: General, 362(1-2), 121-128. https://doi.org/10.1016/j.apcata.2009.04.030