Active Filters

  • (-) Keywords = deactivation
  • (-) Journals ≠ Topics in Catalysis
Search Results 1 - 17 of 17
  • RSS Feed
Select Page
Colloidally engineered Pd and Pt catalysts distinguish surface- and vapor-mediated deactivation mechanisms
Oh, J., Beck, A., Goodman, E. D., Roling, L. T., Boucly, A., Artiglia, L., … Cargnello, M. (2023). Colloidally engineered Pd and Pt catalysts distinguish surface- and vapor-mediated deactivation mechanisms. ACS Catalysis, 13(3), 1812-1822. https://doi.org/10.1021/acscatal.2c04683
Formaldehyde-induced deactivation of ZSM5 catalysts during the methanol-to-hydrocarbons conversion
Pare, C. W. P., Rzepka, P., Hemberger, P., Bodi, A., Hauert, R., van Bokhoven, J. A., & Paunović, V. (2023). Formaldehyde-induced deactivation of ZSM5 catalysts during the methanol-to-hydrocarbons conversion. ACS Catalysis, 14(1), 463-474. https://doi.org/10.1021/acscatal.3c04279
Effect of Pt particle size and phosphorous addition on furfural hydrogenation over Pt/Al<sub>2</sub>O<sub>3</sub>
Agote-Arán, M., Alijani, S., Coffano, C., Villa, A., & Ferri, D. (2022). Effect of Pt particle size and phosphorous addition on furfural hydrogenation over Pt/Al2O3. Catalysis Letters, 152, 980-990. https://doi.org/10.1007/s10562-021-03685-7
Reactivation of catalysts for methanol-to-hydrocarbons conversion with hydrogen
Paunović, V., Sushkevich, V., Rzepka, P., Artiglia, L., Hauert, R., Lee, S. S., & van Bokhoven, J. A. (2022). Reactivation of catalysts for methanol-to-hydrocarbons conversion with hydrogen. Journal of Catalysis, 407, 54-64. https://doi.org/10.1016/j.jcat.2022.01.018
Electron diffraction enables the mapping of coke in ZSM-5 micropores formed during methanol-to-hydrocarbons conversion
Wennmacher, J. T. C., Mahmoudi, S., Rzepka, P., Lee, S. S., Gruene, T., Paunović, V., & van Bokhoven, J. A. (2022). Electron diffraction enables the mapping of coke in ZSM-5 micropores formed during methanol-to-hydrocarbons conversion. Angewandte Chemie International Edition, 61(29), e202205413 (5 pp.). https://doi.org/10.1002/anie.202205413
Demonstrating direct methanation of real biogas in a fluidised bed reactor
Witte, J., Calbry-Muzyka, A., Wieseler, T., Hottinger, P., Biollaz, S. M. A., & Schildhauer, T. J. (2019). Demonstrating direct methanation of real biogas in a fluidised bed reactor. Applied Energy, 240, 359-371. https://doi.org/10.1016/j.apenergy.2019.01.230
Low number concentration of ice nucleating particles in an aged smoke plume
Conen, F., Bukowiecki, N., Gysel, M., Steinbacher, M., Fischer, A., & Reimann, S. (2018). Low number concentration of ice nucleating particles in an aged smoke plume. Quarterly Journal of the Royal Meteorological Society, 144(715), 1991-1994. https://doi.org/10.1002/qj.3312
Structural changes in deactivated fluid catalytic cracking catalysts determined by electron microscopy
Krumeich, F., Ihli, J., Shu, Y., Cheng, W. C., & van Bokhoven, J. A. (2018). Structural changes in deactivated fluid catalytic cracking catalysts determined by electron microscopy. ACS Catalysis, 8(5), 4591-4599. https://doi.org/10.1021/acscatal.8b00649
Visualization of structural changes during deactivation and regeneration of FAU zeolite for catalytic fast pyrolysis of lignin using NMR and electron microscopy techniques
Ma, Z., Ghosh, A., Asthana, N., & van Bokhoven, J. (2018). Visualization of structural changes during deactivation and regeneration of FAU zeolite for catalytic fast pyrolysis of lignin using NMR and electron microscopy techniques. ChemCatChem, 10(19), 4431-4437. https://doi.org/10.1002/cctc.201800670
Deactivation and regeneration of sulfonated carbon catalysts in hydrothermal reaction environments
Scholz, D., Kröcher, O., & Vogel, F. (2018). Deactivation and regeneration of sulfonated carbon catalysts in hydrothermal reaction environments. ChemSusChem, 11(13), 2189-2201. https://doi.org/10.1002/cssc.201800678
Design of stable Ni/ZrO&lt;sub&gt;2&lt;/sub&gt; catalysts for dry reforming of methane
Lou, Y., Steib, M., Zhang, Q., Tiefenbacher, K., Horváth, A., Jentys, A., … Lercher, J. A. (2017). Design of stable Ni/ZrO2 catalysts for dry reforming of methane. Journal of Catalysis, 356, 147-156. https://doi.org/10.1016/j.jcat.2017.10.009
Chromium-induced deactivation of a commercial honeycomb noble metal-based CO oxidation catalyst
Keav, S., Lu, Y., Matam, S. K., Maegli, A. E., Heel, A., Weidenkaff, A., & Ferri, D. (2014). Chromium-induced deactivation of a commercial honeycomb noble metal-based CO oxidation catalyst. Applied Catalysis A: General, 469, 259-266. https://doi.org/10.1016/j.apcata.2013.10.005
Active sites, deactivation and stabilization of Fe-ZSM-5 for the selective catalytic reduction (SCR) of NO with NH<sub>3</sub>
Kröcher, O., & Brandenberger, S. (2012). Active sites, deactivation and stabilization of Fe-ZSM-5 for the selective catalytic reduction (SCR) of NO with NH3. Chimia, 66(9), 687-693. https://doi.org/10.2533/chimia.2012.687
Deactivation and regeneration of H-USY zeolite during lignin catalytic fast pyrolysis
Ma, Z., & van Bokhoven, J. A. (2012). Deactivation and regeneration of H-USY zeolite during lignin catalytic fast pyrolysis. ChemCatChem, 4(12), 2036-2044. https://doi.org/10.1002/cctc.201200401
Hydrothermal deactivation of Fe-ZSM-5 catalysts for the selective catalytic reduction of NO with NH&lt;sub&gt;3&lt;/sub&gt;
Brandenberger, S., Kröcher, O., Casapu, M., Tissler, A., & Althoff, R. (2011). Hydrothermal deactivation of Fe-ZSM-5 catalysts for the selective catalytic reduction of NO with NH3. Applied Catalysis B: Environmental, 101(3-4), 649-659. https://doi.org/10.1016/j.apcatb.2010.11.006
Sulphur poisoning of Ni catalysts in the SNG production from biomass: A TPO/XPS/XAS study
Struis, R. P. W. J., Schildhauer, T. J., Czekaj, I., Janousch, M., Biollaz, S. M. A., & Ludwig, C. (2009). Sulphur poisoning of Ni catalysts in the SNG production from biomass: A TPO/XPS/XAS study. Applied Catalysis A: General, 362(1-2), 121-128. https://doi.org/10.1016/j.apcata.2009.04.030
Chemical deactivation of V<sub>2</sub>O<sub>5</sub>/WO<sub>3</sub>-TiO<sub>2</sub> SCR catalysts by additives and impurities from fuels, lubrication oils, and urea solution. I. Catalytic studies
Kröcher, O., & Elsener, M. (2008). Chemical deactivation of V2O5/WO3-TiO2 SCR catalysts by additives and impurities from fuels, lubrication oils, and urea solution. I. Catalytic studies. Applied Catalysis B: Environmental, 77(3-4), 215-227. https://doi.org/10.1016/j.apcatb.2007.04.021