Active Filters

  • (-) Keywords = decay heat
Search Results 1 - 11 of 11
  • RSS Feed
Select Page
Uncertainty quantification of spent nuclear fuel with multifidelity Monte Carlo
Albà, A., Adelmann, A., & Rochman, D. (2025). Uncertainty quantification of spent nuclear fuel with multifidelity Monte Carlo. Annals of Nuclear Energy, 211, 110892 (17 pp.). https://doi.org/10.1016/j.anucene.2024.110892
Fast uncertainty quantification of spent nuclear fuel with neural networks
Albà, A., Adelmann, A., Münster, L., Rochman, D., & Boiger, R. (2024). Fast uncertainty quantification of spent nuclear fuel with neural networks. Annals of Nuclear Energy, 196, 110204 (8 pp.). https://doi.org/10.1016/j.anucene.2023.110204
Note on the potential to increase the accuracy of source term calculations for spent nuclear fuel
Seidl, M., Schillebeeckx, P., & Rochman, D. (2023). Note on the potential to increase the accuracy of source term calculations for spent nuclear fuel. Frontiers in Energy Research, 11, 1143312 (15 pp.). https://doi.org/10.3389/fenrg.2023.1143312
Analyses of the bias and uncertainty of SNF decay heat calculations using Polaris and ORIGEN
Shama, A., Caruso, S., & Rochman, D. (2023). Analyses of the bias and uncertainty of SNF decay heat calculations using Polaris and ORIGEN. Frontiers in Energy Research, 11, 1161076 (18 pp.). https://doi.org/10.3389/fenrg.2023.1161076
Blind benchmark exercise for spent nuclear fuel decay heat
Jansson, P., Bengtsson, M., Bäckström, U., Álvarez-Velarde, F., Čalič, D., Caruso, S., … Sjöland, A. (2022). Blind benchmark exercise for spent nuclear fuel decay heat. Nuclear Science and Engineering, 196(9), 1125-1145. https://doi.org/10.1080/00295639.2022.2053489
Validation of spent nuclear fuel decay heat calculations using Polaris, ORIGEN and CASMO5
Shama, A., Rochman, D., Caruso, S., & Pautz, A. (2022). Validation of spent nuclear fuel decay heat calculations using Polaris, ORIGEN and CASMO5. Annals of Nuclear Energy, 165, 108758 (14 pp.). https://doi.org/10.1016/j.anucene.2021.108758
Analysis for the ARIANE GU1 sample: nuclide inventory and decay heat
Rochman, D., Vasiliev, A., Ferroukhi, H., & Hursin, M. (2021). Analysis for the ARIANE GU1 sample: nuclide inventory and decay heat. Annals of Nuclear Energy, 160, 108359 (19 pp.). https://doi.org/10.1016/j.anucene.2021.108359
Uncertainty analyses of spent nuclear fuel decay heat calculations using SCALE modules
Rochman, D., Shama, A., Pudollek, S., Caruso, S., & Pautz, A. (2021). Uncertainty analyses of spent nuclear fuel decay heat calculations using SCALE modules. Nuclear Engineering and Technology, 53(9), 2816-2829. https://doi.org/10.1016/j.net.2021.03.013
Uncertainty propagation of fission product yields to nuclide composition and decay heat for a PWR UO2 fuel assembly
Leray, O., Fiorito, L., Rochman, D., Ferroukhi, H., Stankovskiy, A., & Van den Eynde, G. (2017). Uncertainty propagation of fission product yields to nuclide composition and decay heat for a PWR UO2 fuel assembly. Progress in Nuclear Energy, 101, 486-495. https://doi.org/10.1016/j.pnucene.2017.05.033
The effectiveness of full actinide recycle as a nuclear waste management strategy when implemented over a limited timeframe – Part II: thorium fuel cycle
Lindley, B. A., Fiorina, C., Gregg, R., Franceschini, F., & Parks, G. T. (2016). The effectiveness of full actinide recycle as a nuclear waste management strategy when implemented over a limited timeframe – Part II: thorium fuel cycle. Progress in Nuclear Energy, 87, 144-155. https://doi.org/10.1016/j.pnucene.2014.11.016
The effectiveness of full actinide recycle as a nuclear waste management strategy when implemented over a limited timeframe - part I: uranium fuel cycle
Lindley, B. A., Fiorina, C., Gregg, R., Franceschini, F., & Parks, G. T. (2015). The effectiveness of full actinide recycle as a nuclear waste management strategy when implemented over a limited timeframe - part I: uranium fuel cycle. Progress in Nuclear Energy, 85, 498-510. https://doi.org/10.1016/j.pnucene.2015.07.020