Active Filters

  • (-) Keywords = dna damage
Search Results 1 - 9 of 9
  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
MacroH<sub>2</sub>A histone variants limit chromatin plasticity through two distinct mechanisms
Kozlowski, M., Corujo, D., Hothorn, M., Guberovic, I., Mandemaker, I. K., Blessing, C., … Ladurner, A. G. (2018). MacroH2A histone variants limit chromatin plasticity through two distinct mechanisms. EMBO Reports, 19(10), e44445. https://doi.org/10.15252/embr.201744445
Structural Insights into the Recognition of N<sub>2</sub>-Aryl- and C8-Aryl DNA Lesions by the Repair Protein XPA/Rad14
Ebert, C., Simon, N., Schneider, S., & Carell, T. (2017). Structural Insights into the Recognition of N2-Aryl- and C8-Aryl DNA Lesions by the Repair Protein XPA/Rad14. ChemBioChem, 18(14), 1379-1382. https://doi.org/10.1002/cbic.201700169
Structural Basis for Bulky-Adduct DNA-Lesion Recognition by the Nucleotide Excision Repair Protein Rad14
Simon, N., Ebert, C., & Schneider, S. (2016). Structural Basis for Bulky-Adduct DNA-Lesion Recognition by the Nucleotide Excision Repair Protein Rad14. Chemistry: A European Journal, 22(31), 10782-10785. https://doi.org/10.1002/chem.201602438
The p53 cofactor Strap exhibits an unexpected TPR motif and oligonucleotide-binding (OB)-fold structure
Adams, C. J., Pike, A. C. W., Maniam, S., Sharpe, T. D., Coutts, A. S., Knapp, S., … Bullock, A. N. (2012). The p53 cofactor Strap exhibits an unexpected TPR motif and oligonucleotide-binding (OB)-fold structure. Proceedings of the National Academy of Sciences of the United States of America PNAS, 109(10), 3778-3783. https://doi.org/10.1073/pnas.1113731109
Crystal structures and repair studies reveal the identity and the base-pairing properties of the UV-induced spore photoproduct DNA lesion
Heil, K., Kneuttinger, A. C., Schneider, S., Lischke, U., & Carell, T. (2011). Crystal structures and repair studies reveal the identity and the base-pairing properties of the UV-induced spore photoproduct DNA lesion. Chemistry: A European Journal, 17(35), 9651-9657. https://doi.org/10.1002/chem.201100177
Learning from Directed Evolution: Thermus aquaticus DNA Polymerase Mutants with Translesion Synthesis Activity
Obeid, S., Schnur, A., Gloeckner, C., Blatter, N., Welte, W., Diederichs, K., & Marx, A. (2011). Learning from Directed Evolution: Thermus aquaticus DNA Polymerase Mutants with Translesion Synthesis Activity. ChemBioChem, 12(10), 1574-1580. https://doi.org/10.1002/cbic.201000783
Probing functional groups at the gas-aerosol interface using heterogeneous titration reactions: a tool for predicting aerosol health effects?
Setyan, A., Sauvain, J. J., Guillemin, M., Riediker, M., Demirdjian, B., & Rossi, M. J. (2010). Probing functional groups at the gas-aerosol interface using heterogeneous titration reactions: a tool for predicting aerosol health effects? ChemPhysChem, 11(18), 3823-3835. https://doi.org/10.1002/cphc.201000490
Crystal structure of the T(6-4)C lesion in complex with a (6-4) DNA photolyase and repair of UV-induced (6-4) and dewar photolesions
Glas, A. F., Schneider, S., Maul, M. J., Hennecke, U., & Carell, T. (2009). Crystal structure of the T(6-4)C lesion in complex with a (6-4) DNA photolyase and repair of UV-induced (6-4) and dewar photolesions. Chemistry: A European Journal, 15(40), 10387-10396. https://doi.org/10.1002/chem.200901004
Crystal structure and mechanism of a DNA (6-4) photolyase
Maul, M. J., Barends, T. R. M., Glas, A. F., Cryle, M. J., Domratcheva, T., Schneider, S., … Carell, T. (2008). Crystal structure and mechanism of a DNA (6-4) photolyase. Angewandte Chemie International Edition, 47(52), 10076-10080. https://doi.org/10.1002/anie.200804268