Active Filters

  • (-) Keywords = extreme ultraviolet
Search Results 1 - 18 of 18
  • RSS Feed
Select Page
High resolution and uniform image reconstruction in a large field-of-view for EUV actinic mask review
Kim, H., Locans, U., Nebling, R., Dejkameh, A., Kazazis, D., Ekinci, Y., & Mochi, I. (2020). High resolution and uniform image reconstruction in a large field-of-view for EUV actinic mask review. In M. E. Preil (Ed.), Proceedings of SPIE: Vol. 11518. Photomask technology 2020 (p. 115180X (7 pp.). SPIE.
Experimental evaluation of the impact of carbon nanotube EUV pellicles on reticle imaging
Mochi, I., Timmermans, M. Y., Gallagher, E. E., Mariano, M., Pollentier, I., Rajendran, R., … Ekinci, Y. (2019). Experimental evaluation of the impact of carbon nanotube EUV pellicles on reticle imaging. Journal of Micro/Nanolithography, MEMS, and MOEMS, 18(1), 014002 (7 pp.). https://doi.org/10.1117/1.JMM.18.1.014002
Studying resist performance for contact holes printing using EUV interference lithography
Wang, X., Tseng, L. T., Kazazis, D., Tasdemir, Z., Vockenhuber, M., Mochi, I., & Ekinci, Y. (2019). Studying resist performance for contact holes printing using EUV interference lithography. Journal of Micro/Nanolithography, MEMS, and MOEMS, 18(1), 013501 (11 pp.). https://doi.org/10.1117/1.JMM.18.1.013501
Absorption coefficient of metal-containing photoresists in the extreme ultraviolet
Fallica, R., Haitjema, J., Wu, L., Castellanos, S., Brouwer, A. M., & Ekinci, Y. (2018). Absorption coefficient of metal-containing photoresists in the extreme ultraviolet. Journal of Micro/Nanolithography, MEMS, and MOEMS, 17(2), 023505 (7 pp.). https://doi.org/10.1117/1.JMM.17.2.023505
High-resolution grayscale patterning using extreme ultraviolet interference lithography
Fallica, R., Kirchner, R., Schift, H., & Ekinci, Y. (2017). High-resolution grayscale patterning using extreme ultraviolet interference lithography. Microelectronic Engineering, 177, 1-5. https://doi.org/10.1016/j.mee.2017.01.007
Advanced development techniques for metal-based EUV resists
Hotalen, J., Murphy, M., Earley, W., Vockenhuber, M., Ekinci, Y., Freedman, D. A., & Brainard, R. L. (2017). Advanced development techniques for metal-based EUV resists. In K. A. Goldberg & E. M. Panning (Eds.), Proceedings of SPIE: Vol. 10143. Extreme Ultraviolet (EUV) lithography VIII (p. 1014309 (12 pp.). https://doi.org/10.1117/12.2258126
Polarization characterization of soft X-ray radiation at FERMI FEL-2
Roussel, E., Allaria, E., Callegari, C., Coreno, M., Cucini, R., Di Mitri, S., … Giannessi, L. (2017). Polarization characterization of soft X-ray radiation at FERMI FEL-2. Photonics, 4(2), 29 (12 pp.). https://doi.org/10.3390/photonics4020029
Photolithography reaches 6 nm half-pitch using extreme ultraviolet light
Fan, D., & Ekinci, Y. (2016). Photolithography reaches 6 nm half-pitch using extreme ultraviolet light. Journal of Micro/Nanolithography, MEMS, and MOEMS, 15(3), 033505 (7 pp.). https://doi.org/10.1117/1.JMM.15.3.033505
Scanning coherent diffractive imaging methods for actinic extreme ultraviolet mask metrology
Helfenstein, P., Mohacsi, I., Rajeev, R., & Ekinci, Y. (2016). Scanning coherent diffractive imaging methods for actinic extreme ultraviolet mask metrology. Journal of Micro/Nanolithography, MEMS, and MOEMS, 15(3), 034006 (5 pp.). https://doi.org/10.1117/1.JMM.15.3.034006
Low-line edge roughness extreme ultraviolet photoresists of organotin carboxylates
Del Re, R., Passarelli, J., Sortland, M., Cardineau, B., Ekinci, Y., Buitrago, E., … Brainard, R. L. (2015). Low-line edge roughness extreme ultraviolet photoresists of organotin carboxylates. Journal of Micro/Nanolithography, MEMS, and MOEMS, 14(4), 043506 (7 pp.). https://doi.org/10.1117/1.JMM.14.4.043506
Organometallic carboxylate resists for extreme ultraviolet with high sensitivity
Passarelli, J., Murphy, M., Del Re, R., Sortland, M., Hotalen, J., Dousharm, L., … Brainard, R. L. (2015). Organometallic carboxylate resists for extreme ultraviolet with high sensitivity. Journal of Micro/Nanolithography, MEMS, and MOEMS, 14(4), 043503 (10 pp.). https://doi.org/10.1117/1.JMM.14.4.043503
Extreme ultraviolet stokesmeter for pulsed magneto-optics
Ruiz-Lopez, M., Barbato, F., Ekinci, Y., & Bleiner, D. (2015). Extreme ultraviolet stokesmeter for pulsed magneto-optics. Photonics, 2(1), 241-255. https://doi.org/10.3390/photonics2010241
Platinum and palladium oxalates: positive-tone extreme ultraviolet resists
Sortland, M., Hotalen, J., Del Re, R., Passarelli, J., Murphy, M., Kulmala, T. S., … Brainard, R. L. (2015). Platinum and palladium oxalates: positive-tone extreme ultraviolet resists. Journal of Micro/Nanolithography, MEMS, and MOEMS, 14(4), 043511 (13 pp.). https://doi.org/10.1117/1.JMM.14.4.043511
Evaluation of lab-scale EUV microscopy using a table-top laser source
Bleiner, D., Staub, F., Guzenko, V., Ekinci, Y., & Balmer, J. E. (2011). Evaluation of lab-scale EUV microscopy using a table-top laser source. Optics Communications, 284(19), 4577-4583. https://doi.org/10.1016/j.optcom.2011.05.047
Extreme ultraviolet interference lithography at the Paul Scherrer Institut
Auzelyte, V., Dais, C., Farquet, P., Grützmacher, D., Heyderman, L. J., Luo, F., … Solak, H. H. (2009). Extreme ultraviolet interference lithography at the Paul Scherrer Institut. Journal of Micro/Nanolithography, MEMS, and MOEMS, 8(2), 21204. https://doi.org/10.1117/1.3116559
Space-invariant multiple-beam achromatic EUV interference lithography
Solak, H. H. (2005). Space-invariant multiple-beam achromatic EUV interference lithography. Microelectronic Engineering, 78-79(1-4), 410-416. https://doi.org/10.1016/j.mee.2005.01.012
Sub-50 nm period patterns with EUV interference lithography
Solak, H. H., David, C., Gobrecht, J., Golovkina, V., Cerrina, F., Kim, S. O., & Nealey, P. F. (2003). Sub-50 nm period patterns with EUV interference lithography. Microelectronic Engineering, 67-68, 56-62. https://doi.org/10.1016/S0167-9317(03)00059-5
Four-wave EUV interference lithography
Solak, H. H., David, C., Gobrecht, J., Wang, L., & Cerrina, F. (2002). Four-wave EUV interference lithography. Microelectronic Engineering, 61-62, 77-82. https://doi.org/10.1016/S0167-9317(02)00579-8