| A comprehensive analysis of the overpotential losses in polymer electrolyte fuel cells
Fikry, M., García-Padilla, Á., Herranz, J., Khavlyuk, P., Eychmüller, A., & Schmidt, T. J. (2024). A comprehensive analysis of the overpotential losses in polymer electrolyte fuel cells. ACS Catalysis, 14(3), 1903-1913. https://doi.org/10.1021/acscatal.3c04797 |
| Artificial intelligence-based optimization for ring-opening metathesis polymerization of proton exchange membrane
Feng, Z., Jin, S., Xiang, H., Li, D., Sun, S., Zhang, H., & Chen, Y. (2023). Artificial intelligence-based optimization for ring-opening metathesis polymerization of proton exchange membrane. Journal of Polymer Research, 30(11), 418 (9 pp.). https://doi.org/10.1007/s10965-023-03787-3 |
| Effect of aggregate size and film quality on the electrochemical properties of non-noble metal catalysts in rotating ring disk electrode measurements
Ünsal, S., Schmidt, T. J., & Herranz, J. (2023). Effect of aggregate size and film quality on the electrochemical properties of non-noble metal catalysts in rotating ring disk electrode measurements. Electrochimica Acta, 445, 142024 (9 pp.). https://doi.org/10.1016/j.electacta.2023.142024 |
| <em>Operando </em>liquid pressure determination in polymer electrolyte fuel cells
Mularczyk, A., Lin, Q., Niblett, D., Vasile, A., Blunt, M. J., Niasar, V., … Eller, J. (2021). Operando liquid pressure determination in polymer electrolyte fuel cells. ACS Applied Materials and Interfaces, 13(29), 34003-34011. https://doi.org/10.1021/acsami.1c04560 |
| Does size matter? The influence of size, load factor, range autonomy, and application type on the life cycle assessment of current and future medium- and heavy-duty vehicles
Sacchi, R., Bauer, C., & Cox, B. L. (2021). Does size matter? The influence of size, load factor, range autonomy, and application type on the life cycle assessment of current and future medium- and heavy-duty vehicles. Environmental Science and Technology, 55(8), 5224-5235. https://doi.org/10.1021/acs.est.0c07773 |
| Two-phase flow dynamics in a gas diffusion layer - gas channel - microporous layer system
Niblett, D., Mularczyk, A., Niasar, V., Eller, J., & Holmes, S. (2020). Two-phase flow dynamics in a gas diffusion layer - gas channel - microporous layer system. Journal of Power Sources, 471, 228427 (12 pp.). https://doi.org/10.1016/j.jpowsour.2020.228427 |
| CFD simulation of the transient gas transport in a PEM fuel cell cathode during AC impedance testing considering liquid water effects
Iranzo, A., & Boillat, P. (2018). CFD simulation of the transient gas transport in a PEM fuel cell cathode during AC impedance testing considering liquid water effects. Energy, 158, 449-457. https://doi.org/10.1016/j.energy.2018.06.039 |
| Boosting Pt oxygen reduction reaction activity by tuning the tin oxide support
Fabbri, E., Rabis, A., Chino, Y., Uchida, M., & Schmidt, T. J. (2017). Boosting Pt oxygen reduction reaction activity by tuning the tin oxide support. Electrochemistry Communications, 83, 90-95. https://doi.org/10.1016/j.elecom.2017.09.006 |
| Stability and degradation mechanisms of radiation-grafted polymer electrolyte membranes for water electrolysis
Albert, A., Lochner, T., Schmidt, T. J., & Gubler, L. (2016). Stability and degradation mechanisms of radiation-grafted polymer electrolyte membranes for water electrolysis. ACS Applied Materials and Interfaces, 8(24), 15297-15306. https://doi.org/10.1021/acsami.6b03050 |
| Effect of serpentine multi-pass flow field channel orientation in the liquid water distributions and cell performance
Iranzo, A., Biesdorf, J., Cochet, M., Salva, A., Boillat, P., & Rosa, F. (2016). Effect of serpentine multi-pass flow field channel orientation in the liquid water distributions and cell performance. Fuel Cells, 16(6), 777-783. https://doi.org/10.1002/fuce.201600096 |
| Structure-property correlations of ion-containing polymers for fuel cell applications
Sproll, V., Nagy, G., Gasser, U., Balog, S., Gustavsson, S., Schmidt, T. J., & Gubler, L. (2016). Structure-property correlations of ion-containing polymers for fuel cell applications. Radiation Physics and Chemistry, 118, 120-123. https://doi.org/10.1016/j.radphyschem.2015.01.036 |
| Methyl phosphate formation as a major degradation mode of direct methanol fuel cells with phosphoric acid based electrolytes
Aili, D., Vassiliev, A., Jensen, J. O., Schmidt, T. J., & Li, Q. (2015). Methyl phosphate formation as a major degradation mode of direct methanol fuel cells with phosphoric acid based electrolytes. Journal of Power Sources, 279, 517-521. https://doi.org/10.1016/j.jpowsour.2015.01.010 |
| Radiation-grafted polymer electrolyte membranes for water electrolysis cells: evaluation of key membrane properties
Albert, A., Barnett, A. O., Thomassen, M. S., Schmidt, T. J., & Gubler, L. (2015). Radiation-grafted polymer electrolyte membranes for water electrolysis cells: evaluation of key membrane properties. ACS Applied Materials and Interfaces, 7(40), 22203-22212. https://doi.org/10.1021/acsami.5b04618 |
| Application of the Kramers Kronig relations to locally resolved impedance data of polymer electrolyte fuel cells
Bayer, M. H., & Schneider, I. A. (2013). Application of the Kramers Kronig relations to locally resolved impedance data of polymer electrolyte fuel cells. Journal of Electroanalytical Chemistry, 689, 42-45. https://doi.org/10.1016/j.jelechem.2012.11.011 |
| Fuel cell membranes based on grafted and post-sulfonated glycidyl methacrylate (GMA)
Buchmüller, Y., Wokaun, A., & Gubler, L. (2013). Fuel cell membranes based on grafted and post-sulfonated glycidyl methacrylate (GMA). Fuel Cells, 13(6), 1177-1185. https://doi.org/10.1002/fuce.201300144 |
| Simultaneous neutron imaging of six operating PEFCs: experimental set-up and study of the MPL effect
Oberholzer, P., Boillat, P., Siegrist, R., Kästner, A., Lehmann, E. H., Scherer, G. G., & Wokaun, A. (2012). Simultaneous neutron imaging of six operating PEFCs: experimental set-up and study of the MPL effect. Electrochemistry Communications, 20(1), 67-70. https://doi.org/10.1016/j.elecom.2012.03.038 |
| Electrocatalysis for polymer electrolyte fuel cells: recent achievements and future challenges
Rabis, A., Rodriguez, P., & Schmidt, T. J. (2012). Electrocatalysis for polymer electrolyte fuel cells: recent achievements and future challenges. ACS Catalysis, 2(5), 864-890. https://doi.org/10.1021/cs3000864 |
| Fuel cell/battery passive hybrid power source for electric powertrains
Bernard, J., Hofer, M., Hannesen, U., Toth, A., Tsukada, A., Büchi, F. N., & Dietrich, P. (2011). Fuel cell/battery passive hybrid power source for electric powertrains. Journal of Power Sources, 196(14), 5867-5872. https://doi.org/10.1016/j.jpowsour.2011.03.015 |
| In-the-loop validation of fuel cell vehicle control
Wilhelm, E., Fowler, M., Fraser, R. A., & Stevens, M. (2011). In-the-loop validation of fuel cell vehicle control. International Journal of Powertrains, 1(2), 162-178. https://doi.org/10.1504/IJPT.2011.042766 |
| Mass transfer characteristics in porous media applying simultaneous measurement method of water visualization by neutron radiography and oxygen diffusivity
Utaka, Y., Tasaki, Y., Wang, S., Iwasaki, D., Waki, N., Kubo, N., … Lehmann, E. H. (2010). Mass transfer characteristics in porous media applying simultaneous measurement method of water visualization by neutron radiography and oxygen diffusivity. Transactions of the Japan Society of Mechanical Engineers. Series B, 76(771), 1964-1972. https://doi.org/10.1299/kikaib.76.771_1964 |