Active Filters

  • (-) Keywords = global sensitivity analysis
Search Results 1 - 6 of 6
  • RSS Feed
Select Page
Global sensitivity analysis on numerical solver parameters of particle-in-cell models in particle accelerator systems
Frey, M., & Adelmann, A. (2020). Global sensitivity analysis on numerical solver parameters of particle-in-cell models in particle accelerator systems. Computer Physics Communications, 258, 107577 (17 pp.). https://doi.org/10.1016/j.cpc.2020.107577
Metamodeling for uncertainty quantification of a flood wave model for concrete dam breaks
Kalinina, A., Spada, M., Vetsch, D., Marelli, S., Whealton, C., Burgherr, P., & Sudret, B. (2020). Metamodeling for uncertainty quantification of a flood wave model for concrete dam breaks. Energies, 13(14), 3685 (25 pp.). https://doi.org/10.3390/en13143685
Global sensitivity and registration strategy for temperature profile of reflood experiment simulations
Perret, G., Wicaksono, D., Clifford, I. D., & Ferroukhi, H. (2019). Global sensitivity and registration strategy for temperature profile of reflood experiment simulations. Nuclear Technology, 205(12), 1638-1651. https://doi.org/10.1080/00295450.2019.1591154
Global sensitivity analysis of transient code output applied to a reflood experiment model using the TRACE code
Wicaksono, D., Zerkak, O., & Pautz, A. (2016). Global sensitivity analysis of transient code output applied to a reflood experiment model using the TRACE code. Nuclear Science and Engineering, 184(3), 400-429. https://doi.org/10.13182/NSE16-37
A methodology for global sensitivity analysis of transient code output applied to a reflood experiment model using TRACE
Wicaksono, D., Zerkak, O., & Pautz, A. (2015). A methodology for global sensitivity analysis of transient code output applied to a reflood experiment model using TRACE. In 16th international topical meeting on nuclear reactor thermal hydraulics (NURETH-16) (pp. 4862-4879). American Nuclear Society.
NUSS-RF: stochastic sampling-based tool for nuclear data sensitivity and uncertainty quantification
Zhu, T., Vasiliev, A., Ferroukhi, H., Pautz, A., & Tarantola, S. (2015). NUSS-RF: stochastic sampling-based tool for nuclear data sensitivity and uncertainty quantification. Journal of Nuclear Science and Technology, 52(7-8), 1000-1007. https://doi.org/10.1080/00223131.2015.1040864