Active Filters

  • (-) Keywords = heterogeneous catalysis
  • (-) Publication Status ≠ In Press
Search Results 1 - 20 of 71

Pages

  • RSS Feed
Select Page
Active sites in Cr(III)-based ethylene polymerization catalysts from machine-learning-supported XAS and EPR spectroscopy
Ashuiev, A., Giorgia Nobile, A., Trummer, D., Klose, D., Guda, S., Safonova, O. V., … Jeschke, G. (2024). Active sites in Cr(III)-based ethylene polymerization catalysts from machine-learning-supported XAS and EPR spectroscopy. Angewandte Chemie International Edition, 63(1), e202313348 (7 pp.). https://doi.org/10.1002/anie.202313348
Factors affecting the generation and catalytic activity of extra-framework aluminum Lewis acid sites in aluminum-exchanged zeolites
Batool, S. R., Sushkevich, V. L., & van Bokhoven, J. A. (2024). Factors affecting the generation and catalytic activity of extra-framework aluminum Lewis acid sites in aluminum-exchanged zeolites. ACS Catalysis, 14, 678-690. https://doi.org/10.1021/acscatal.3c04195
Design principles of <em>operando </em>ultraviolet-visible and electron paramagnetic resonance spectroscopy setups for active site characterization in ion-exchanged zeolites
Fischer, J. W. A., Buttignol, F., Brenig, A., Klose, D., Ferri, D., Sushkevich, V., … Jeschke, G. (2024). Design principles of operando ultraviolet-visible and electron paramagnetic resonance spectroscopy setups for active site characterization in ion-exchanged zeolites. Catalysis Today, 429, 114503 (10 pp.). https://doi.org/10.1016/j.cattod.2023.114503
Oxidative depolymerization of kraft lignin to aromatics over bimetallic V–Cu/ZrO<sub>2</sub> catalysts
Abdelaziz, O. Y., Clemmensen, I., Meier, S., Bjelić, S., Hulteberg, C. P., & Riisager, A. (2023). Oxidative depolymerization of kraft lignin to aromatics over bimetallic V–Cu/ZrO2 catalysts. Topics in Catalysis, 66, 1369-1380. https://doi.org/10.1007/s11244-023-01826-3
Group 10 metal allyl amidinates: a family of readily accessible and stable molecular precursors to generate supported nanoparticles
Ehinger, C., Zhou, X., Candrian, M., Docherty, S. R., Pollitt, S., & Copéret, C. (2023). Group 10 metal allyl amidinates: a family of readily accessible and stable molecular precursors to generate supported nanoparticles. JACS Au, 3(8), 2314-2322. https://doi.org/10.1021/jacsau.3c00334
Methane oxidation over Cu<sup>2+</sup>/[CuOH]<sup>+</sup> pairs and site‐specific kinetics in copper mordenite revealed by operando electron paramagnetic resonance and UV‐visible spectroscopy
Fischer, J. W. A., Brenig, A., Klose, D., van Bokhoven, J. A., Sushkevich, V. L., & Jeschke, G. (2023). Methane oxidation over Cu2+/[CuOH]+ pairs and site‐specific kinetics in copper mordenite revealed by operando electron paramagnetic resonance and UV‐visible spectroscopy. Angewandte Chemie International Edition, 62(34), e202303574 (10 pp.). https://doi.org/10.1002/anie.202303574
Heterogeneous Mn-based catalysts for the aerobic conversion of methane-to-methyl trifluoroacetate
Ji, Y., Blankenship, A. N., & van Bokhoven, J. A. (2023). Heterogeneous Mn-based catalysts for the aerobic conversion of methane-to-methyl trifluoroacetate. ACS Catalysis, 13(6), 3896-3901. https://doi.org/10.1021/acscatal.2c06292
Ti-doping in silica-supported PtZn propane dehydrogenation catalysts: from improved stability to the nature of the Pt-Ti interaction
Rochlitz, L., Fischer, J. W. A., Pessemesse, Q., Clark, A. H., Ashuiev, A., Klose, D., … Copéret, C. (2023). Ti-doping in silica-supported PtZn propane dehydrogenation catalysts: from improved stability to the nature of the Pt-Ti interaction. JACS Au, 3(7), 1939-1951. https://doi.org/10.1021/jacsau.3c00197
Platinum‐iron(II) oxide sites directly responsible for preferential carbon monoxide oxidation at ambient temperature: an operando X‐ray absorption spectroscopy study
Sadykov, I. I., Sushkevich, V. L., Krumeich, F., Nuguid, R. J. G., van Bokhoven, J. A., Nachtegaal, M., & Safonova, O. (2023). Platinum‐iron(II) oxide sites directly responsible for preferential carbon monoxide oxidation at ambient temperature: an operando X‐ray absorption spectroscopy study. Angewandte Chemie International Edition, 62(1), e202214032 (11 pp.). https://doi.org/10.1002/anie.202214032
Origin of the activity trend in the oxidative dehydrogenation of ethanol over VO<em><sub>x</sub></em>/CeO<sub>2</sub>
Zabilska, A., Zabilskiy, M., Nuguid, R. J. G., Clark, A. H., Sadykov, I. I., Nachtegaal, M., … Safonova, O. V. (2023). Origin of the activity trend in the oxidative dehydrogenation of ethanol over VOx/CeO2. Angewandte Chemie International Edition, 62(18), e202301297 (8 pp.). https://doi.org/10.1002/anie.202301297
New dimensions in catalysis research with hard X-ray tomography
Das, S., Pashminehazar, R., Sharma, S., Weber, S., & Sheppard, T. L. (2022). New dimensions in catalysis research with hard X-ray tomography. Chemie Ingenieur Technik, 94(11), 1591-1610. https://doi.org/10.1002/cite.202200082
Structural effects of metal single-atom catalysts for enhanced photocatalytic degradation of gemfibrozil
Ruta, V., Sivo, A., Bonetti, L., Bajada, M. A., & Vilé, G. (2022). Structural effects of metal single-atom catalysts for enhanced photocatalytic degradation of gemfibrozil. ACS Applied Nano Materials, 5(10), 14520-14528. https://doi.org/10.1021/acsanm.2c02859
Azide-alkyne click chemistry over a heterogeneous copper-based single-atom catalyst
Vilé, G., Di Liberto, G., Tosoni, S., Sivo, A., Ruta, V., Nachtegaal, M., … Pacchioni, G. (2022). Azide-alkyne click chemistry over a heterogeneous copper-based single-atom catalyst. ACS Catalysis, 12(5), 2947-2958. https://doi.org/10.1021/acscatal.1c05610
Heterogeneously‐catalyzed aerobic oxidation of methane to a methyl derivative
Blankenship, A. N., Ravi, M., Newton, M. A., & van Bokhoven, J. A. (2021). Heterogeneously‐catalyzed aerobic oxidation of methane to a methyl derivative. Angewandte Chemie International Edition, 60(33), 18138-18143. https://doi.org/10.1002/anie.202104153
Spatial profiling of a Pd/Al&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt; catalyst during selective ammmonia oxidation
Decarolis, D., Clark, A. H., Pellegrinelli, T., Nachtegaal, M., Lynch, E. W., Catlow, C. R. A., … Wells, P. P. (2021). Spatial profiling of a Pd/Al2O3 catalyst during selective ammmonia oxidation. ACS Catalysis, 11, 2141-2149. https://doi.org/10.1021/acscatal.0c05356
Silica-supported PdGa nanoparticles: metal synergy for highly active and selective CO<sub>2</sub>-to-CH<sub>3</sub>OH hydrogenation
Docherty, S. R., Phongprueksathat, N., Lam, E., Noh, G., Safonova, O. V., Urakawa, A., & Copéret, C. (2021). Silica-supported PdGa nanoparticles: metal synergy for highly active and selective CO2-to-CH3OH hydrogenation. JACS Au, 1(4), 450-458. https://doi.org/10.1021/jacsau.1c00021
Evolution of heterogeneity in industrial selective oxidation catalyst pellets
Ihli, J., Bloch, L., Boecklein, S., Rzepka, P., Burghammer, M., da Silva, J. C., … van Bokhoven, J. A. (2021). Evolution of heterogeneity in industrial selective oxidation catalyst pellets. ACS Catalysis, 11(13), 8274-8283. https://doi.org/10.1021/acscatal.1c01744
CO<sub>2</sub> hydrogenation on Cu-catalysts generated from Zn<sup>II</sup> single-sites: enhanced CH<sub>3</sub>OH selectivity compared to Cu/ZnO/Al<sub>2</sub>O<sub>3</sub>
Lam, E., Noh, G., Larmier, K., Safonova, O. V., & Copéret, C. (2021). CO2 hydrogenation on Cu-catalysts generated from ZnII single-sites: enhanced CH3OH selectivity compared to Cu/ZnO/Al2O3. Journal of Catalysis, 394, 266-272. https://doi.org/10.1016/j.jcat.2020.04.028
Operando characterisation of alumina-supported bimetallic Pd-Pt catalysts during methane oxidation in dry and wet conditions
Large, A., Seymour, J., Quevedo Garzon, W., Roy, K., Venturini, F., Grinter, D. C., … Held, G. (2021). Operando characterisation of alumina-supported bimetallic Pd-Pt catalysts during methane oxidation in dry and wet conditions. Journal of Physics D: Applied Physics, 54(17), 174006 (10 pp.). https://doi.org/10.1088/1361-6463/abde67
Infrared thermography as an operando tool for the analysis of catalytic processes: How to use it?
Mutschler, R., & Moioli, E. (2021). Infrared thermography as an operando tool for the analysis of catalytic processes: How to use it? Catalysts, 11(3), 311 (21 pp.). https://doi.org/10.3390/catal11030311
 

Pages