Active Filters

  • (-) Keywords = iron
Search Results 1 - 20 of 34
Select Page
A redox switch allows binding of Fe(II) and Fe(III) ions in the cyanobacterial iron-binding protein FutA from Prochlorococcus
Bolton, R., Machelett, M. M., Stubbs, J., Axford, D., Caramello, N., Catapano, L., … Tews, I. (2024). A redox switch allows binding of Fe(II) and Fe(III) ions in the cyanobacterial iron-binding protein FutA from Prochlorococcus. Proceedings of the National Academy of Sciences of the United States of America PNAS, 121(12), e2308478121 (6 pp.). https://doi.org/10.1073/pnas.2308478121
Visualizing alpha-synuclein and iron deposition in M83 mouse model of Parkinson's disease in vivo
Straumann, N., Combes, B. F., Dean Ben, X. L., Sternke-Hoffmann, R., Gerez, J. A., Dias, I., … Ni, R. (2024). Visualizing alpha-synuclein and iron deposition in M83 mouse model of Parkinson's disease in vivo. Brain Pathology, e13288 (14 pp.). https://doi.org/10.1111/bpa.13288
Transformation of 2-line ferrihydrite to goethite at alkaline pH
Furcas, F. E., Lothenbach, B., Mundra, S., Borca, C. N., Albert, C. C., Isgor, O. B., … Angst, U. M. (2023). Transformation of 2-line ferrihydrite to goethite at alkaline pH. Environmental Science and Technology, 57(42), 16097-16108. https://doi.org/10.1021/acs.est.3c05260
Formation and transformation of Fe(III)- and Ca-precipitates in aqueous solutions and effects on phosphate retention over time
Nenonen, V. V., Kaegi, R., Hug, S. J., Göttlicher, J., Mangold, S., Winkel, L. H. E., & Voegelin, A. (2023). Formation and transformation of Fe(III)- and Ca-precipitates in aqueous solutions and effects on phosphate retention over time. Geochimica et Cosmochimica Acta, 360, 207-230. https://doi.org/10.1016/j.gca.2023.09.004
Case study 1: modulation excitation spectroscopy (MES)
Nuguid, R. J. G., & Ferri, D. (2023). Case study 1: modulation excitation spectroscopy (MES). In I. Wachs & M. A. Bañares (Eds.), Springer handbooks. Springer handbook of advanced catalyst characterization (pp. 979-989). https://doi.org/10.1007/978-3-031-07125-6_43
Iron speciation in blast furnace slag cements
Mancini, A., Lothenbach, B., Geng, G., Grolimund, D., Sanchez, D. F., Fakra, S. C., … Wieland, E. (2021). Iron speciation in blast furnace slag cements. Cement and Concrete Research, 140, 106287 (18 pp.). https://doi.org/10.1016/j.cemconres.2020.106287
Direct evidence on the mechanism of methane conversion under non-oxidative conditions over iron-modified silica: the role of propargyl radicals Unveiled
Puente-Urbina, A., Pan, Z., Paunović, V., Šot, P., Hemberger, P., & van Bokhoven, J. A. (2021). Direct evidence on the mechanism of methane conversion under non-oxidative conditions over iron-modified silica: the role of propargyl radicals Unveiled. Angewandte Chemie International Edition, 60(45), 24002-24007. https://doi.org/10.1002/anie.202107553
A secreted fungal histidine- and alanine-rich protein regulates metal ion homeostasis and oxidative stress
Nostadt, R., Hilbert, M., Nizam, S., Rovenich, H., Wawra, S., Martin, J., … Zuccaro, A. (2020). A secreted fungal histidine- and alanine-rich protein regulates metal ion homeostasis and oxidative stress. New Phytologist, 227(4), 1174-1188. https://doi.org/10.1111/nph.16606
Non-oxidative methane coupling over silica versus silica‐supported iron(II) single sites
Šot, P., Newton, M. A., Baabe, D., Walter, M. D., van Bavel, A. P., Horton, A. D., … van Bokhoven, J. A. (2020). Non-oxidative methane coupling over silica versus silica‐supported iron(II) single sites. Chemistry: A European Journal, 26(36), 8012-8016. https://doi.org/10.1002/chem.202001139
Emerging approaches to investigate the influence of transition metals in the proteinopathies
Lermyte, F., Everett, J., Brooks, J., Bellingeri, F., Billimoria, K., Sadler, P. J., … Collingwood, J. F. (2019). Emerging approaches to investigate the influence of transition metals in the proteinopathies. Cells, 8(10), 1231 (26 pp.). https://doi.org/10.3390/cells8101231
Formation of low-molecular-weight organic compounds during anoxic corrosion of zero-valent iron
Cvetković, B. Z., Rothardt, J., Büttler, A., Kunz, D., Schlotterbeck, G., & Wieland, E. (2018). Formation of low-molecular-weight organic compounds during anoxic corrosion of zero-valent iron. Environmental Engineering Science, 35(5), 447-461. https://doi.org/10.1089/ees.2017.0216
Iron NRT- and arc-displacement cross sections and their covariances
Simakov, S. P., Fischer, U., Koning, A. J., Konobeyev, A. Y., & Rochman, D. A. (2018). Iron NRT- and arc-displacement cross sections and their covariances. Nuclear Materials and Energy, 15, 244-248. https://doi.org/10.1016/j.nme.2018.05.006
Extraction of archaeological information from metallic artefacts - a neutron diffraction study on Viking swords
Fedrigo, A., Grazzi, F., Williams, A. R., Panzner, T., Lefmann, K., Lindelof, P. E., … Strobl, M. (2017). Extraction of archaeological information from metallic artefacts - a neutron diffraction study on Viking swords. Journal of Archaeological Science: Reports, 12, 425-436. https://doi.org/10.1016/j.jasrep.2017.02.014
Electronic structure of Fe, α-Fe<sub>2</sub>O<sub>3</sub> and Fe(NO<sub>3</sub>)<sub>3</sub> × 9 H<sub>2</sub>O determined using RXES
Nowakowski, M., Czapla-Masztafiak, J., Szlachetko, J., & Kwiatek, W. M. (2017). Electronic structure of Fe, α-Fe2O3 and Fe(NO3)3 × 9 H2O determined using RXES. Chemical Physics, 493, 49-55. https://doi.org/10.1016/j.chemphys.2017.06.002
Crystal structure of FhuD at 1.6 Å resolution: a ferrichrome-binding protein from the animal and human pathogen &lt;em&gt;Staphylococcus pseudintermedius&lt;/em&gt;
Abate, F., Cozzi, R., Maritan, M., Lo Surdo, P., Maione, D., Malito, E., & Bottomley, M. J. (2016). Crystal structure of FhuD at 1.6 Å resolution: a ferrichrome-binding protein from the animal and human pathogen Staphylococcus pseudintermedius. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 72, 214-219. https://doi.org/10.1107/S2053230X16002272
High pressure neutron diffraction to beyond 20 GPa and below 1.8 K using Paris-Edinburgh load frames
Klotz, S., Strässle, T., Lebert, B., d'Astuto, M., & Hansen, T. (2016). High pressure neutron diffraction to beyond 20 GPa and below 1.8 K using Paris-Edinburgh load frames. High Pressure Research, 36(1), 73-78. https://doi.org/10.1080/08957959.2015.1136624
Ferromagnetism in Fe&lt;sub&gt;3-&lt;em&gt;x&lt;/em&gt;-&lt;em&gt;y&lt;/em&gt;&lt;/sub&gt;Ni&lt;sub&gt;&lt;em&gt;x&lt;/em&gt;&lt;/sub&gt;GeTe&lt;sub&gt;2&lt;/sub&gt;
Stahl, J., Pomjakushin, V., & Johrendt, D. (2016). Ferromagnetism in Fe3-x-yNixGeTe2. Zeitschrift für Naturforschung - Section B Journal of Chemical Sciences, 71(4), 273-276. https://doi.org/10.1515/znb-2015-0208
Determination of oxidation state of iron in normal and pathologically altered human aortic valves
Czapla-Masztafiak, J., Lis, G. J., Gajda, M., Jasek, E., Czubek, U., Bolechała, F., … Kwiatek, W. M. (2015). Determination of oxidation state of iron in normal and pathologically altered human aortic valves. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 364, 70-75. https://doi.org/10.1016/j.nimb.2015.04.026
Controlled oxidation of iron nanoparticles in chemical vapour synthesis
Ruusunen, J., Ihalainen, M., Koponen, T., Torvela, T., Tenho, M., Salonen, J., … Lähde, A. (2014). Controlled oxidation of iron nanoparticles in chemical vapour synthesis. Journal of Nanoparticle Research, 16(2), 2270 (11 pp.). https://doi.org/10.1007/s11051-014-2270-0
Role of biopolymers as major carrier phases of Th, Pa, Pb, Po, and Be radionuclides in settling particles from the Atlantic Ocean
Chuang, C. Y., Santschi, P. H., Ho, Y. F., Conte, M. H., Guo, L., Schumann, D., … Li, Y. H. (2013). Role of biopolymers as major carrier phases of Th, Pa, Pb, Po, and Be radionuclides in settling particles from the Atlantic Ocean. Marine Chemistry, 157, 131-143. https://doi.org/10.1016/j.marchem.2013.10.002