| Electronic structures of endohedral fullerenes with scandium, titanium and iron atoms and metal-carbon clusters
Ryzhkov, M. V., Medvedeva, N. I., & Delley, B. (2017). Electronic structures of endohedral fullerenes with scandium, titanium and iron atoms and metal-carbon clusters. Polyhedron, 134, 376-384. https://doi.org/10.1016/j.poly.2017.06.032 |
| Electronic structure and stability of metal-carbon nanoparticles with Cr, Mn, Fe and W impurities
Ryzhkov, M. V., Medvedeva, N. I., & Delley, B. (2016). Electronic structure and stability of metal-carbon nanoparticles with Cr, Mn, Fe and W impurities. Polyhedron, 109, 182-189. https://doi.org/10.1016/j.poly.2016.01.037 |
| Relative orientation of the magnetic moments in modulated multiferroic CaMn<sub>7</sub>O<sub>12</sub>
Przeniosło, R., Wardecki, D., Sławiński, W., Sosnowska, I., & Keller, L. (2013). Relative orientation of the magnetic moments in modulated multiferroic CaMn7O12. Physica B: Condensed Matter, 428, 27-29. https://doi.org/10.1016/j.physb.2013.07.008 |
| Geometry, electronic structure, and magnetic ordering of iron-carbon nanoparticles
Ryzhkov, M. V., & Delley, B. (2012). Geometry, electronic structure, and magnetic ordering of iron-carbon nanoparticles. Theoretical Chemistry Accounts, 131(3), 1144 (18 pp.). https://doi.org/10.1007/s00214-012-1144-8 |
| Magnetic ordering and spin dynamics of Ba<sub>1-<em>x</em></sub>Eu<em><sub>x</sub></em>Si phases
Spahr, M., Nesper, R., Ensling, J., Gütlich, P., Schenck, A., Pinkpank, M., … Ouladdiaf, B. (2011). Magnetic ordering and spin dynamics of Ba1-xEuxSi phases. Zeitschrift für Anorganische und Allgemeine Chemie, 637(7-8), 825-833. https://doi.org/10.1002/zaac.201100118 |
| Magnetic structure of Tm<sub>5</sub>Rh<sub>4</sub>Ge<sub>10</sub>
Penc, B., Wawrzyńska, E., Keller, L., & Szytuła, A. (2008). Magnetic structure of Tm5Rh4Ge10. Journal of Magnetism and Magnetic Materials, 320(1-2), L1-L4. https://doi.org/10.1016/j.jmmm.2007.05.014 |
| Geometry, electronic structure and energy barriers of all possible isomers of Fe<sub>2</sub>C<sub>3</sub> nanoparticle
Ryzhkov, M. V., Ivanovskii, A. L., & Delley, B. (2008). Geometry, electronic structure and energy barriers of all possible isomers of Fe2C3 nanoparticle. Theoretical Chemistry Accounts, 119(4), 313-318. https://doi.org/10.1007/s00214-007-0385-4 |
| Interplay between Tm<sup>3+</sup> and Cr<sup>5+</sup> magnetic sublattices in TmCrO<sub>4</sub>
Jiménez, E., Gubbens, P. C. M., Sakarya, S., Stewart, G. A., Dalmas de Réotier, P., Yaouanc, A., … Zimmermann, U. (2004). Interplay between Tm3+ and Cr5+ magnetic sublattices in TmCrO4. Journal of Magnetism and Magnetic Materials, 272-276(I), 568-570. https://doi.org/10.1016/j.jmmm.2003.11.213 |
| Magnetic properties of geometrically frustrated Zn<sub><em>x</em></sub>Li<sub>1−<em>x</em></sub>V<sub>2</sub>O<sub>4</sub>
Kalvius, G. M., Noakes, D. R., Wäppling, R., Büttgen, N., Krimmel, A., Klemm, M., … Loidl, A. (2003). Magnetic properties of geometrically frustrated ZnxLi1−xV2O4. Physica B: Condensed Matter, 326(1-4), 470-474. https://doi.org/10.1016/S0921-4526(02)01670-8 |
| μSR studies of the interaction between magnetism and superconductivity in κ-BETS<sub>2</sub>FeCl<sub>4</sub>
Pratt, F. L., Lee, S. L., Blundell, S. J., Marshall, I. M., Uozaki, H., & Toyota, N. (2003). μSR studies of the interaction between magnetism and superconductivity in κ-BETS2FeCl4. Synthetic Metals, 133-134(Spec. issue), 489-492. https://doi.org/10.1016/S0379-6779(02)00394-6 |
| Inhomogeneous magnetism in electron doped cuprates
Baabe, D., Klauß, H. H., Kopmann, W., Birke, M., Mienert, D., Litterst, F. J., … Litterst, F. Z. (2001). Inhomogeneous magnetism in electron doped cuprates. Journal of Magnetism and Magnetic Materials, 226-230(Spec. issue part 1), 95-97. https://doi.org/10.1016/S0304-8853(00)01130-6 |
| Magnetic fields acting on muons in textured and single crystalline holmium
Ponomarev, A. N., Ivanter, I. G., Krivosheev, I. A., Nezhivoy, A. A., Nikolsky, B. A., Duginov, V. N., … Zimmermann, U. (2000). Magnetic fields acting on muons in textured and single crystalline holmium. Physica B: Condensed Matter, 289-290, 236-239. https://doi.org/10.1016/S0921-4526(00)00377-X |
| Low-temperature thermodynamic properties of CeNi<sub>1-<em>x</em></sub>Cu<sub><em>x</em></sub>Sn
Vollmer, R., Mioković, T., Schröder, A., v. Löhneysen, H., Kalvius, G. M., Echizen, Y., & Takabatake, T. (2000). Low-temperature thermodynamic properties of CeNi1-xCuxSn. Physica B: Condensed Matter, 291(3-4), 307-309. https://doi.org/10.1016/S0921-4526(99)02282-6 |