Active Filters

  • (-) Keywords = membrane proteins
Search Results 1 - 20 of 24
Select Page
In meso in situ serial X-Ray crystallography (IMISX): a protocol for membrane protein structure determination at the Swiss Light Source
Huang, C. Y., Olieric, V., Caffrey, M., & Wang, M. (2020). In meso in situ serial X-Ray crystallography (IMISX): a protocol for membrane protein structure determination at the Swiss Light Source. In C. Perez & T. Maier (Eds.), Methods in molecular biology: Vol. 2127. Expression, purification, and structural biology of membrane proteins. https://doi.org/10.1007/978-1-0716-0373-4_20
Structure-factor amplitude reconstruction from serial femtosecond crystallography of two-dimensional membrane-protein crystals
Casadei, C. M., Nass, K., Barty, A., Hunter, M. S., Padeste, C., Tsai, C. J., … Pedrini, B. (2019). Structure-factor amplitude reconstruction from serial femtosecond crystallography of two-dimensional membrane-protein crystals. IUCrJ, 6, 34-45. https://doi.org/10.1107/S2052252518014641
Crystal structure of Photosystem i monomer from <em>Synechocystis </em>PCC 6803
Netzer-El, S. Y., Caspy, I., & Nelson, N. (2019). Crystal structure of Photosystem i monomer from Synechocystis PCC 6803. Frontiers in Plant Science, 9, 1865 (7 pp.). https://doi.org/10.3389/fpls.2018.01865
Resolution extension by image summing in serial femtosecond crystallography of two-dimensional membrane-protein crystals
Casadei, C. M., Tsai, C. J., Barty, A., Hunter, M. S., Zatsepin, N. A., Padeste, C., … Frank, M. (2018). Resolution extension by image summing in serial femtosecond crystallography of two-dimensional membrane-protein crystals. IUCrJ, 5(1), 103-117. https://doi.org/10.1107/S2052252517017043
Crystal structure and mechanistic basis of a functional homolog of the antigen transporter TAP
Nöll, A., Thomas, C., Herbring, V., Zollmann, T., Barth, K., Mehdipour, A. R., … Tampé, R. (2017). Crystal structure and mechanistic basis of a functional homolog of the antigen transporter TAP. Proceedings of the National Academy of Sciences of the United States of America PNAS, 114(4), E438-E447. https://doi.org/10.1073/pnas.1620009114
Serial millisecond crystallography of membrane proteins
Jaeger, K., Dworkowski, F., Nogly, P., Milne, C., Wang, M., & Standfuss, J. (2016). Serial millisecond crystallography of membrane proteins. In I. Moraes (Ed.), Advances in experimental medicine and biology: Vol. 922. The next generation in membrane protein structure determination. https://doi.org/10.1007/978-3-319-35072-1_10
TMalphaDB and TMbetaDB: web servers to study the structural role of sequence motifs in α-helix and β-barrel domains of membrane proteins
Perea, M., Lugtenburg, I., Mayol, E., Cordomí, A., Deupí, X., Pardo, L., & Olivella, M. (2015). TMalphaDB and TMbetaDB: web servers to study the structural role of sequence motifs in α-helix and β-barrel domains of membrane proteins. BMC Bioinformatics, 16, 266 (6 pp.). https://doi.org/10.1186/s12859-015-0699-5
Phase behavior of a designed cyclopropyl analogue of monoolein: Implications for low-temperature membrane protein crystallization
Salvati Manni, L., Zabara, A., Osornio, Y. M., Schöppe, J., Batyuk, A., Plückthun, A., … Landau, E. M. (2015). Phase behavior of a designed cyclopropyl analogue of monoolein: Implications for low-temperature membrane protein crystallization. Angewandte Chemie International Edition, 54(3), 1027-1031. https://doi.org/10.1002/anie.201409791
Structure of signaling-competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli
Egloff, P., Hillenbrand, M., Klenk, C., Batyuk, A., Heine, P., Balada, S., … Plückthun, A. (2014). Structure of signaling-competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America PNAS, 111(6), E655-E662. https://doi.org/10.1073/pnas.1317903111
Connecting photosynthetic light harvesting and charge separation at higher detail
Einsle, O. (2014). Connecting photosynthetic light harvesting and charge separation at higher detail. Angewandte Chemie International Edition, 53(31), 7988-7990. https://doi.org/10.1002/anie.201405489
The tricky task of nitrate/nitrite antiport
Andrade, S. L. A., & Einsle, O. (2013). The tricky task of nitrate/nitrite antiport. Angewandte Chemie International Edition, 52(40), 10422-10424. https://doi.org/10.1002/anie.201305421
An analysis of oligomerization interfaces in transmembrane proteins
Duarte, J. M., Biyani, N., Baskaran, K., & Capitani, G. (2013). An analysis of oligomerization interfaces in transmembrane proteins. BMC Structural Biology, 13(1), 21. https://doi.org/10.1186/1472-6807-13-21
Crystal structure of the high-affinity Na+,K+-ATPase- ouabain complex with Mg2+ bound in the cation binding site
Laursen, M., Yatime, L., Nissen, P., & Fedosova, N. U. (2013). Crystal structure of the high-affinity Na+,K+-ATPase- ouabain complex with Mg2+ bound in the cation binding site. Proceedings of the National Academy of Sciences of the United States of America PNAS, 110(27), 10958-10963. https://doi.org/10.1073/pnas.1222308110
The formate/nitrite transporter family of anion channels
Lü, W., Du, J., Schwarzer, N. J., Wacker, T., Andrade, S. L. A., & Einsle, O. (2013). The formate/nitrite transporter family of anion channels. Biological Chemistry, 394(6), 715-727. https://doi.org/10.1515/hsz-2012-0339
Purification, crystallization and preliminary crystallographic studies of a PacL homologue from Listeria monocytogenes
Hein, K. L., Nissen, P., & Morth, J. P. (2012). Purification, crystallization and preliminary crystallographic studies of a PacL homologue from Listeria monocytogenes. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 68(4), 424-427. https://doi.org/10.1107/S1744309112004046
Low-resolution structure determination of Na +-translocating NADH:ubiquinone oxidoreductase from Vibrio cholerae by ab initio phasing and electron microscopy
Lunin, V. Y., Lunina, N. L., Casutt, M. S., Knoops, K., Schaffitzel, C., Steuber, J., … Baumstark, M. W. (2012). Low-resolution structure determination of Na +-translocating NADH:ubiquinone oxidoreductase from Vibrio cholerae by ab initio phasing and electron microscopy. Acta Crystallographica Section D: Structural Biology, 68(6), 724-731. https://doi.org/10.1107/S0907444912012012
Crystallization and preliminary structural analysis of the Listeria monocytogenes Ca2+-ATPase LMCA1
Andersen, J. L., Gourdon, P., Mller, J. V., Morth, J. P., & Nissen, P. (2011). Crystallization and preliminary structural analysis of the Listeria monocytogenes Ca2+-ATPase LMCA1. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 67(6), 718-722. https://doi.org/10.1107/S174430911101548X
Influence of the g- conformation of Ser and Thr on the structure of transmembrane helices
Deupi, X., Olivella, M., Sanz, A., Dölker, N., Campillo, M., & Pardo, L. (2010). Influence of the g- conformation of Ser and Thr on the structure of transmembrane helices. Journal of Structural Biology, 169(1), 116-123. https://doi.org/10.1016/j.jsb.2009.09.009
Structure determination using poorly diffracting membrane-protein crystals: The H+-ATPase and Na+,K+-ATPase case history
Pedersen, B. P., Morth, J. P., & Nissen, P. (2010). Structure determination using poorly diffracting membrane-protein crystals: The H+-ATPase and Na+,K+-ATPase case history. Acta Crystallographica Section D: Structural Biology, 66(3), 309-313. https://doi.org/10.1107/S0907444909053244
The use of novel organic gels and hydrogels in protein crystallization
Pietras, Z., Lin, H. T., Surade, S., Luisi, B., Slattery, O., Pos, K. M., & Moreno, A. (2010). The use of novel organic gels and hydrogels in protein crystallization. Journal of Applied Crystallography, 43(1), 58-63. https://doi.org/10.1107/S0021889809051917