| Correction of rhodopsin serial crystallography diffraction intensities for a lattice-translocation defect
Rodrigues, M. J., Casadei, C. M., Weinert, T., Panneels, V., & Schertler, G. F. X. (2023). Correction of rhodopsin serial crystallography diffraction intensities for a lattice-translocation defect. Acta Crystallographica Section D: Structural Biology, 79(3), D79 (10 pp.). https://doi.org/10.1107/S2059798323000931 |
| Variations on a theme: crystal forms of the amino-acid transporter MhsT
Neumann, C., Focht, D., Trampari, S., Lyons, J. A., & Nissen, P. (2022). Variations on a theme: crystal forms of the amino-acid transporter MhsT. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 78, 297-305. https://doi.org/10.1107/S2053230X22007154 |
| A set of common movements within GPCR-G-protein complexes from variability analysis of cryo-EM datasets
Marino, J., & Schertler, G. F. X. (2021). A set of common movements within GPCR-G-protein complexes from variability analysis of cryo-EM datasets. Journal of Structural Biology, 213(2), 107699 (7 pp.). https://doi.org/10.1016/j.jsb.2021.107699 |
| In meso in situ serial X-Ray crystallography (IMISX): a protocol for membrane protein structure determination at the Swiss Light Source
Huang, C. Y., Olieric, V., Caffrey, M., & Wang, M. (2020). In meso in situ serial X-Ray crystallography (IMISX): a protocol for membrane protein structure determination at the Swiss Light Source. In C. Perez & T. Maier (Eds.), Methods in molecular biology: Vol. 2127. Expression, purification, and structural biology of membrane proteins (pp. 293-319). https://doi.org/10.1007/978-1-0716-0373-4_20 |
| Low-dose <em>in situ</em> prelocation of protein microcrystals by 2D X-ray phase-contrast imaging for serial crystallography
Martiel, I., Huang, C. Y., Villanueva-Perez, P., Panepucci, E., Basu, S., Caffrey, M., … Wang, M. (2020). Low-dose in situ prelocation of protein microcrystals by 2D X-ray phase-contrast imaging for serial crystallography. IUCrJ, 7(6), 1131-1141. https://doi.org/10.1107/S2052252520013238 |
| Structure-factor amplitude reconstruction from serial femtosecond crystallography of two-dimensional membrane-protein crystals
Casadei, C. M., Nass, K., Barty, A., Hunter, M. S., Padeste, C., Tsai, C. J., … Pedrini, B. (2019). Structure-factor amplitude reconstruction from serial femtosecond crystallography of two-dimensional membrane-protein crystals. IUCrJ, 6, 34-45. https://doi.org/10.1107/S2052252518014641 |
| Crystal structure of Photosystem i monomer from <em>Synechocystis </em>PCC 6803
Netzer-El, S. Y., Caspy, I., & Nelson, N. (2019). Crystal structure of Photosystem i monomer from Synechocystis PCC 6803. Frontiers in Plant Science, 9, 1865 (7 pp.). https://doi.org/10.3389/fpls.2018.01865 |
| Resolution extension by image summing in serial femtosecond crystallography of two-dimensional membrane-protein crystals
Casadei, C. M., Tsai, C. J., Barty, A., Hunter, M. S., Zatsepin, N. A., Padeste, C., … Frank, M. (2018). Resolution extension by image summing in serial femtosecond crystallography of two-dimensional membrane-protein crystals. IUCrJ, 5(1), 103-117. https://doi.org/10.1107/S2052252517017043 |
| Crystal structure and mechanistic basis of a functional homolog of the antigen transporter TAP
Nöll, A., Thomas, C., Herbring, V., Zollmann, T., Barth, K., Mehdipour, A. R., … Tampé, R. (2017). Crystal structure and mechanistic basis of a functional homolog of the antigen transporter TAP. Proceedings of the National Academy of Sciences of the United States of America PNAS, 114(4), E438-E447. https://doi.org/10.1073/pnas.1620009114 |
| Serial millisecond crystallography of membrane proteins
Jaeger, K., Dworkowski, F., Nogly, P., Milne, C., Wang, M., & Standfuss, J. (2016). Serial millisecond crystallography of membrane proteins. In I. Moraes (Ed.), Advances in experimental medicine and biology: Vol. 922. The next generation in membrane protein structure determination (pp. 137-149). https://doi.org/10.1007/978-3-319-35072-1_10 |
| TMalphaDB and TMbetaDB: web servers to study the structural role of sequence motifs in α-helix and β-barrel domains of membrane proteins
Perea, M., Lugtenburg, I., Mayol, E., Cordomí, A., Deupí, X., Pardo, L., & Olivella, M. (2015). TMalphaDB and TMbetaDB: web servers to study the structural role of sequence motifs in α-helix and β-barrel domains of membrane proteins. BMC Bioinformatics, 16, 266 (6 pp.). https://doi.org/10.1186/s12859-015-0699-5 |
| Phase behavior of a designed cyclopropyl analogue of monoolein: Implications for low-temperature membrane protein crystallization
Salvati Manni, L., Zabara, A., Osornio, Y. M., Schöppe, J., Batyuk, A., Plückthun, A., … Landau, E. M. (2015). Phase behavior of a designed cyclopropyl analogue of monoolein: Implications for low-temperature membrane protein crystallization. Angewandte Chemie International Edition, 54(3), 1027-1031. https://doi.org/10.1002/anie.201409791 |
| Structure of signaling-competent neurotensin receptor 1 obtained by directed evolution in <em>Escherichia coli</em>
Egloff, P., Hillenbrand, M., Klenk, C., Batyuk, A., Heine, P., Balada, S., … Plückthun, A. (2014). Structure of signaling-competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America PNAS, 111(6), E655-E662. https://doi.org/10.1073/pnas.1317903111 |
| Structure determination of α-helical membrane proteins by solution-state NMR: emphasis on retinal proteins
Gautier, A. (2014). Structure determination of α-helical membrane proteins by solution-state NMR: emphasis on retinal proteins. Biochimica et Biophysica Acta: Bioenergetics, 1837(5), 578-588. https://doi.org/10.1016/j.bbabio.2013.06.009 |
| The tricky task of nitrate/nitrite antiport
Andrade, S. L. A., & Einsle, O. (2013). The tricky task of nitrate/nitrite antiport. Angewandte Chemie International Edition, 52(40), 10422-10424. https://doi.org/10.1002/anie.201305421 |
| An analysis of oligomerization interfaces in transmembrane proteins
Duarte, J. M., Biyani, N., Baskaran, K., & Capitani, G. (2013). An analysis of oligomerization interfaces in transmembrane proteins. BMC Structural Biology, 13(1), 21 (11 pp.). https://doi.org/10.1186/1472-6807-13-21 |
| Crystal structure of the high-affinity Na<sup>+</sup>K<sup>+</sup>-ATPase-ouabain complex with Mg<sup>2+</sup> bound in the cation binding site
Laursen, M., Yatime, L., Nissen, P., & Fedosova, N. U. (2013). Crystal structure of the high-affinity Na+K+-ATPase-ouabain complex with Mg2+ bound in the cation binding site. Proceedings of the National Academy of Sciences of the United States of America PNAS, 110(27), 10958-10963. https://doi.org/10.1073/pnas.1222308110 |
| The formate/nitrite transporter family of anion channels
Lü, W., Du, J., Schwarzer, N. J., Wacker, T., Andrade, S. L. A., & Einsle, O. (2013). The formate/nitrite transporter family of anion channels. Biological Chemistry, 394(6), 715-727. https://doi.org/10.1515/hsz-2012-0339 |
| Directional proton transfer in membrane proteins achieved through protonated protein-bound water molecules: a proton diode
Wolf, S., Freier, E., Potschies, M., Hofmann, E., & Gerwert, K. (2010). Directional proton transfer in membrane proteins achieved through protonated protein-bound water molecules: a proton diode. Angewandte Chemie International Edition, 49(38), 6889-6893. https://doi.org/10.1002/anie.201001243 |
| Structure and function of VEGF receptors
Stuttfeld, E., & Ballmer-Hofer, K. (2009). Structure and function of VEGF receptors. IUBMB Life, 61(9), 915-922. https://doi.org/10.1002/iub.234 |