Active Filters

  • (-) Keywords = microfluidics
Search Results 1 - 11 of 11
  • RSS Feed
Select Page
In situ visualization of the structural evolution and alignment of lyotropic liquid crystals in confined flow
Rodriguez‐Palomo, A., Lutz‐Bueno, V., Cao, X., Kádár, R., Andersson, M., & Liebi, M. (2021). In situ visualization of the structural evolution and alignment of lyotropic liquid crystals in confined flow. Small, 17(7), 2006229 (10 pp.). https://doi.org/10.1002/smll.202006229
Neural network based process coupling and parameter upscaling in reactive transport simulations
Prasianakis, N. I., Haller, R., Mahrous, M., Poonoosamy, J., Pfingsten, W., & Churakov, S. V. (2020). Neural network based process coupling and parameter upscaling in reactive transport simulations. Geochimica et Cosmochimica Acta, 291, 126-143. https://doi.org/10.1016/j.gca.2020.07.019
Sample consumption reduction for serial crystallography using water-in-oil droplets
Echelmeier, A., Villarreal, J. C., Kim, D., Gandhi, S., Egatz-Gomez, A., Thifault, D., … Ros, A. (2019). Sample consumption reduction for serial crystallography using water-in-oil droplets. In 23rd international conference on miniaturized systems for chemistry and life sciences, MicroTAS 2019. International conference on miniaturized systems for chemistry and life sciences (pp. 1476-1477). Chemical and biological microsystems society.
Microfabricated silicon chip as lipid membrane sample holder for serial protein crystallography
Górzny, M. Ł., Opara, N. L., Guzenko, V. A., Cadarso, V. J., Schift, H., Li, X. D., & Padeste, C. (2019). Microfabricated silicon chip as lipid membrane sample holder for serial protein crystallography. Micro and Nano Engineering, 3, 31-36. https://doi.org/10.1016/j.mne.2019.03.002
A simple and versatile microfluidic device for efficient biomacromolecule crystallization and structural analysis by serial crystallography
de Wijn, R., Hennig, O., Roche, J., Engilberge, S., Rollet, K., Fernandez-Millan, P., … Sauter, C. (2019). A simple and versatile microfluidic device for efficient biomacromolecule crystallization and structural analysis by serial crystallography. IUCrJ, 6(3), 454-464. https://doi.org/10.1107/S2052252519003622
Exploration of near-infrared-emissive colloidal multinary lead halide perovskite nanocrystals using an automated microfluidic platform
Lignos, I., Morad, V., Shynkarenko, Y., Bernasconi, C., Maceiczyk, R. M., Protesescu, L., … Kovalenko, M. V. (2018). Exploration of near-infrared-emissive colloidal multinary lead halide perovskite nanocrystals using an automated microfluidic platform. ACS Nano, 12(6), 5504-5517. https://doi.org/10.1021/acsnano.8b01122
Rapid acquisition of X-ray scattering data from droplet-encapsulated protein systems
Saldanha, O., Graceffa, R., Hémonnot, C. Y. J., Ranke, C., Brehm, G., Liebi, M., … Köster, S. (2017). Rapid acquisition of X-ray scattering data from droplet-encapsulated protein systems. ChemPhysChem, 18(10), 1220-1223. https://doi.org/10.1002/cphc.201700221
X-ray studies of biological matter in microfluidic environments
Köster, S., & Pfohl, T. (2012). X-ray studies of biological matter in microfluidic environments. Modern Physics Letters B, 26(26), 1230018. https://doi.org/10.1142/S0217984912300189
Challenges in the development of functional assays of membrane proteins
Tiefenauer, L., & Demarche, S. (2012). Challenges in the development of functional assays of membrane proteins. Materials, 5(11), 2205-2242. https://doi.org/10.3390/ma5112205
Novel sample preparation technique for protein crystal X-ray crystallographic analysis combining microfluidics and acoustic manipulation
Oberti, S., Möller, D., Gutmann, S., Neild, A., & Dual, J. (2009). Novel sample preparation technique for protein crystal X-ray crystallographic analysis combining microfluidics and acoustic manipulation. Journal of Applied Crystallography, 42(4), 636-641. https://doi.org/10.1107/S0021889809019177
Theory of X-ray scattering from a complex fluid confined by a nanocavity array
Diaz, A., & van der Veen, J. F. (2007). Theory of X-ray scattering from a complex fluid confined by a nanocavity array. Thin Solid Films, 515(14), 5645-5653. https://doi.org/10.1016/j.tsf.2006.12.117