Active Filters

  • (-) Keywords = nanoparticles
  • (-) Journals ≠ Journal of Physical Chemistry C
Search Results 1 - 20 of 73

Pages

  • RSS Feed
Select Page
OligoBinders: bioengineered soluble amyloid-like nanoparticles to bind and neutralize SARS-CoV-2
Behbahanipour, M., Benoit, R., Navarro, S., & Ventura, S. (2023). OligoBinders: bioengineered soluble amyloid-like nanoparticles to bind and neutralize SARS-CoV-2. ACS Applied Materials and Interfaces, 15(9), 11444-11457. https://doi.org/10.1021/acsami.2c18305
Group 10 metal allyl amidinates: a family of readily accessible and stable molecular precursors to generate supported nanoparticles
Ehinger, C., Zhou, X., Candrian, M., Docherty, S. R., Pollitt, S., & Copéret, C. (2023). Group 10 metal allyl amidinates: a family of readily accessible and stable molecular precursors to generate supported nanoparticles. JACS Au, 3(8), 2314-2322. https://doi.org/10.1021/jacsau.3c00334
Colloidal ternary telluride quantum dots for tunable phase change optics in the visible and near-infrared
Kumaar, D., Can, M., Portner, K., Weigand, H., Yarema, O., Wintersteller, S., … Yarema, M. (2023). Colloidal ternary telluride quantum dots for tunable phase change optics in the visible and near-infrared. ACS Nano, 17(7), 6985-6997. https://doi.org/10.1021/acsnano.3c01187
Toward high efficiency water processed organic photovoltaics: controlling the nanoparticle morphology with surface energies
Laval, H., Holmes, A., Marcus, M. A., Watts, B., Bonfante, G., Schmutz, M., … Chambon, S. (2023). Toward high efficiency water processed organic photovoltaics: controlling the nanoparticle morphology with surface energies. Advanced Energy Materials, 13(26), 2300249 (14 pp.). https://doi.org/10.1002/aenm.202300249
Ti-doping in silica-supported PtZn propane dehydrogenation catalysts: from improved stability to the nature of the Pt-Ti interaction
Rochlitz, L., Fischer, J. W. A., Pessemesse, Q., Clark, A. H., Ashuiev, A., Klose, D., … Copéret, C. (2023). Ti-doping in silica-supported PtZn propane dehydrogenation catalysts: from improved stability to the nature of the Pt-Ti interaction. JACS Au, 3(7), 1939-1951. https://doi.org/10.1021/jacsau.3c00197
Phenomenology of ultrafine particle concentrations and size distribution across urban Europe
Trechera, P., Garcia-Marlès, M., Liu, X., Reche, C., Pérez, N., Savadkoohi, M., … Querol, X. (2023). Phenomenology of ultrafine particle concentrations and size distribution across urban Europe. Environment International, 172, 107744 (17 pp.). https://doi.org/10.1016/j.envint.2023.107744
Synchrotron XRF and histological analyses identify damage to digestive tract of uranium NP-exposed <em>Daphnia magna</em>
Byrnes, I., Rossbach, L. M., Jaroszewicz, J., Grolimund, D., Ferreira Sanchez, D., Gomez-Gonzalez, M. A., … Lind, O. C. (2022). Synchrotron XRF and histological analyses identify damage to digestive tract of uranium NP-exposed Daphnia magna. Environmental Science and Technology, 57(2), 1071-1079. https://doi.org/10.1021/acs.est.2c07174
Mesostructure and magnetic properties of SiO<sub>2</sub>-Co granular film on silicon substrate
Grigoryeva, N. A., Ukleev, V., Vorobiev, A. A., Stognij, A. I., Novitskii, N. N., Lutsev, L. V., & Grigoriev, S. V. (2022). Mesostructure and magnetic properties of SiO2-Co granular film on silicon substrate. Magnetochemistry, 8(12), 167 (19 pp.). https://doi.org/10.3390/magnetochemistry8120167
Silica-supported PdGa nanoparticles: metal synergy for highly active and selective CO<sub>2</sub>-to-CH<sub>3</sub>OH hydrogenation
Docherty, S. R., Phongprueksathat, N., Lam, E., Noh, G., Safonova, O. V., Urakawa, A., & Copéret, C. (2021). Silica-supported PdGa nanoparticles: metal synergy for highly active and selective CO2-to-CH3OH hydrogenation. JACS Au, 1(4), 450-458. https://doi.org/10.1021/jacsau.1c00021
Signature of antiphase boundaries in iron oxide nanoparticles
Köhler, T., Feoktystov, A., Petracic, O., Nandakumaran, N., Cervellino, A., & Brückel, T. (2021). Signature of antiphase boundaries in iron oxide nanoparticles. Journal of Applied Crystallography, 54, 1719-1729. https://doi.org/10.1107/S1600576721010128
Surfactant-free synthesis of size controlled platinum nanoparticles: Insights from &lt;em&gt;in situ&lt;/em&gt; studies
Quinson, J., Dworzak, A., Simonsen, S. B., Theil Kuhn, L., Jensen, K. M. Ø., Zana, A., … Arenz, M. (2021). Surfactant-free synthesis of size controlled platinum nanoparticles: Insights from in situ studies. Applied Surface Science, 549, 149263 (9 pp.). https://doi.org/10.1016/j.apsusc.2021.149263
Nuclearity and host effects of carbon-supported platinum catalysts for dibromomethane hydrodebromination
Saadun, A. J., Kaiser, S. K., Ruiz-Ferrando, A., Pablo-García, S., Büchele, S., Fako, E., … Pérez-Ramírez, J. (2021). Nuclearity and host effects of carbon-supported platinum catalysts for dibromomethane hydrodebromination. Small, 17(16), 2005234 (13 pp.). https://doi.org/10.1002/smll.202005234
Structure sensitivity of nitrogen–doped carbon–supported metal catalysts in dihalomethane hydrodehalogenation
Saadun, A. J., Ruiz–Ferrando, A., Büchele, S., Faust Akl, D., López, N., & Pérez–Ramírez, J. (2021). Structure sensitivity of nitrogen–doped carbon–supported metal catalysts in dihalomethane hydrodehalogenation. Journal of Catalysis, 404, 291-305. https://doi.org/10.1016/j.jcat.2021.10.008
Global uncertainty-sensitivity analysis on mechanistic kinetic models: from model assessment to theory-driven design of nanoparticles
Andalibi, M. R., Bowen, P., Carino, A., & Testino, A. (2020). Global uncertainty-sensitivity analysis on mechanistic kinetic models: from model assessment to theory-driven design of nanoparticles. Computers and Chemical Engineering, 140, 106971 (19 pp.). https://doi.org/10.1016/j.compchemeng.2020.106971
Bulk-processed Pd nanocube-poly(methyl methacrylate) nanocomposites as plasmonic plastics for hydrogen sensing
Darmadi, I., Stolaś, A., Östergren, I., Berke, B., Nugroho, F. A. A., Minelli, M., … Langhammer, C. (2020). Bulk-processed Pd nanocube-poly(methyl methacrylate) nanocomposites as plasmonic plastics for hydrogen sensing. ACS Applied Nano Materials, 3(8), 8438-8445. https://doi.org/10.1021/acsanm.0c01907
Solvent-dependent growth and stabilization mechanisms of surfactant-free colloidal Pt nanoparticles
Quinson, J., Neumann, S., Kacenauskaite, L., Bucher, J., Kirkensgaard, J. J. K., Simonsen, S. B., … Arenz, M. (2020). Solvent-dependent growth and stabilization mechanisms of surfactant-free colloidal Pt nanoparticles. Chemistry: A European Journal, 26(41), 9012-9023. https://doi.org/10.1002/chem.202001553
Zinc phosphate nanoparticles produced in saliva
Saloga, P. E. J., Smales, G. J., Clark, A. H., & Thünemann, A. F. (2020). Zinc phosphate nanoparticles produced in saliva. European Journal of Inorganic Chemistry, 2020(38), 3654-3661. https://doi.org/10.1002/ejic.202000521
Small CoFe&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;4&lt;/sub&gt; magnetic nanoparticles in ferrofluids, influence of the synthesis on the magnetic anisotropies
Daffé, N., Gavrilov, V., Neveu, S., Choueikani, F., Arrio, M. A., Juhin, A., … Sainctavit, P. (2019). Small CoFe2O4 magnetic nanoparticles in ferrofluids, influence of the synthesis on the magnetic anisotropies. Journal of Magnetism and Magnetic Materials, 477, 226-231. https://doi.org/10.1016/j.jmmm.2019.01.048
SCC mitigation in boiling water reactors: platinum deposition and durability on structural materials
Grundler, P. V., Ritter, S., & Veleva, L. (2019). SCC mitigation in boiling water reactors: platinum deposition and durability on structural materials. In J. H. Jackson, D. Paraventi, & M. Wright (Eds.), The minerals, metals & materials series: Vol. 2. Proceedings of the 18th international conference on environmental degradation of materials in nuclear power systems – water reactors (pp. 1685-1700). https://doi.org/10.1007/978-3-030-04639-2_113
Reentrant phase behavior of nanoparticle solutions probed by small-angle scattering
Kumar, S., Ray, D., Abbas, S., Saha, D., Aswal, V. K., & Kohlbrecher, J. (2019). Reentrant phase behavior of nanoparticle solutions probed by small-angle scattering. Current Opinion in Colloid and Interface Science, 42, 17-32. https://doi.org/10.1016/j.cocis.2019.02.010
 

Pages