| Optically stimulated luminescence dosimeters for simultaneous measurement of point dose and dose-weighted LET in an adaptive proton therapy workflow
Bobić, M., Christensen, J. B., Lee, H., Choulilitsa, E., Czerska, K., Togno, M., … Nesteruk, K. P. (2024). Optically stimulated luminescence dosimeters for simultaneous measurement of point dose and dose-weighted LET in an adaptive proton therapy workflow. Frontiers in Oncology, 13, 1333039 (11 pp.). https://doi.org/10.3389/fonc.2023.1333039 |
| Optically stimulated luminescence detectors for LET determination and dosimetry in ion beam therapy
Christensen, J. B., Bossin, L., Muñoz, I. D., Stengl, C., Vedelago, J., & Yukihara, E. G. (2024). Optically stimulated luminescence detectors for LET determination and dosimetry in ion beam therapy. Radiation Measurements, 177, 107270 (7 pp.). https://doi.org/10.1016/j.radmeas.2024.107270 |
| Impact of sample preparation temperature on Li and Ce co-doped MgB<sub>4</sub>O<sub>7</sub> dosimetry performance: a plausible scenario for controlling defect clustering
Plokhikh, I., Kondracki, Ł., Yukihara, E. G., Gawryluk, D. J., & Bossin, L. (2024). Impact of sample preparation temperature on Li and Ce co-doped MgB4O7 dosimetry performance: a plausible scenario for controlling defect clustering. Journal of Luminescence, 275, 120784 (9 pp.). https://doi.org/10.1016/j.jlumin.2024.120784 |
| Testing the S/S<sub>R</sub> procedure using TLDs and OSLDs and a lexsyg smart automated reader for precise dosimetry
Motta, S., Christensen, J. B., & Yukihara, E. G. (2023). Testing the S/SR procedure using TLDs and OSLDs and a lexsyg smart automated reader for precise dosimetry. Radiation Measurements, 168, 107013 (9 pp.). https://doi.org/10.1016/j.radmeas.2023.107013 |
| The effect of shallow and deep traps on the determination of thermal quenching using pulsed optically stimulated luminescence: the case of Al<sub>2</sub>O<sub>3</sub>:C
Pakari, O. V., Christensen, J. B., Yukihara, E. G., & Bossin, L. (2022). The effect of shallow and deep traps on the determination of thermal quenching using pulsed optically stimulated luminescence: the case of Al2O3:C. Journal of Luminescence, 248, 118982 (9 pp.). https://doi.org/10.1016/j.jlumin.2022.118982 |
| Demonstration of an optically stimulated luminescence (OSL) material with reduced quenching for proton therapy dosimetry: MgB<sub>4</sub>O<sub>7</sub>:Ce,Li
Yukihara, E. G., Christensen, J. B., & Togno, M. (2022). Demonstration of an optically stimulated luminescence (OSL) material with reduced quenching for proton therapy dosimetry: MgB4O7:Ce,Li. Radiation Measurements, 152, 106721 (8 pp.). https://doi.org/10.1016/j.radmeas.2022.106721 |
| The quest for new thermoluminescence and optically stimulated luminescence materials: needs, strategies and pitfalls
Yukihara, E. G., Bos, A. J. J., Bilski, P., & McKeever, S. W. S. (2022). The quest for new thermoluminescence and optically stimulated luminescence materials: needs, strategies and pitfalls. Radiation Measurements, 158, 106846 (19 pp.). https://doi.org/10.1016/j.radmeas.2022.106846 |
| Al<sub>2</sub>O<sub>3</sub>:C optically stimulated luminescence dosimeters (OSLDs) for ultra-high dose rate proton dosimetry
Christensen, J. B., Togno, M., Nesteruk, K. P., Psoroulas, S., Meer, D., Weber, D. C., … Safai, S. (2021). Al2O3:C optically stimulated luminescence dosimeters (OSLDs) for ultra-high dose rate proton dosimetry. Physics in Medicine and Biology, 66(8), 085003 (11 pp.). https://doi.org/10.1088/1361-6560/abe554 |
| Development of Ce<sup>3+</sup> and Li<sup>+</sup> co-doped magnesium borate glass ceramics for optically stimulated luminescence dosimetry
Kitagawa, Y., Yukihara, E. G., & Tanabe, S. (2021). Development of Ce3+ and Li+ co-doped magnesium borate glass ceramics for optically stimulated luminescence dosimetry. Journal of Luminescence, 232, 117847 (8 pp.). https://doi.org/10.1016/j.jlumin.2020.117847 |
| Al<sub>2</sub>O<sub>3</sub>:C and Al<sub>2</sub>O<sub>3</sub>:C,Mg optically stimulated luminescence 2D dosimetry applied to magnetic resonance guided radiotherapy
Shrestha, N., Yukihara, E. G., Cusumano, D., & Placidi, L. (2020). Al2O3:C and Al2O3:C,Mg optically stimulated luminescence 2D dosimetry applied to magnetic resonance guided radiotherapy. Radiation Measurements, 138, 106439 (10 pp.). https://doi.org/10.1016/j.radmeas.2020.106439 |
| Feasibility studies on the use of MgB<sub>4</sub>O<sub>7</sub>:Ce,Li-based films in 2D optically stimulated luminescence dosimetry
Shrestha, N., Vandenbroucke, D., Leblans, P., & Yukihara, E. G. (2020). Feasibility studies on the use of MgB4O7:Ce,Li-based films in 2D optically stimulated luminescence dosimetry. Physics Open, 5, 100037 (10 pp.). https://doi.org/10.1016/j.physo.2020.100037 |
| A review on the OSL of BeO in light of recent discoveries: the missing piece of the puzzle?
Yukihara, E. G. (2020). A review on the OSL of BeO in light of recent discoveries: the missing piece of the puzzle? Radiation Measurements, 134, 106291 (7 pp.). https://doi.org/10.1016/j.radmeas.2020.106291 |
| Thermoluminescence and optically stimulated luminescence properties of the Eu2<sup>+</sup>-doped KMgF<sub>3</sub> produced by a hydrothermal microwave method
Andrade, A. B., Macedo, Z. S., Valerio, M. E. G., & Yukihara, E. G. (2019). Thermoluminescence and optically stimulated luminescence properties of the Eu2+-doped KMgF3 produced by a hydrothermal microwave method. Journal of Luminescence, 206, 302-307. https://doi.org/10.1016/j.jlumin.2018.10.012 |
| Progress and challenges towards the development of a new optically stimulated luminescence (OSL) material based on MgB<sub>4</sub>O<sub>7</sub>:Ce,Li
Gustafson, T. D., Milliken, E. D., Jacobsohn, L. G., & Yukihara, E. G. (2019). Progress and challenges towards the development of a new optically stimulated luminescence (OSL) material based on MgB4O7:Ce,Li. Journal of Luminescence, 212, 242-249. https://doi.org/10.1016/j.jlumin.2019.04.028 |
| Lanthanide-doped MgO: a case study on how to design new phosphors for dosimetry with tailored luminescent properties
Oliveira, L. C., Yukihara, E. G., & Baffa, O. (2019). Lanthanide-doped MgO: a case study on how to design new phosphors for dosimetry with tailored luminescent properties. Journal of Luminescence, 209, 21-30. https://doi.org/10.1016/j.jlumin.2019.01.015 |
| Characterization of the thermally transferred optically stimulated luminescence (TT-OSL) of BeO
Yukihara, E. G. (2019). Characterization of the thermally transferred optically stimulated luminescence (TT-OSL) of BeO. Radiation Measurements, 126, 106132 (8 pp.). https://doi.org/10.1016/j.radmeas.2019.106132 |
| Observation of strong thermally transferred optically stimulated luminescence (TT-OSL) in BeO
Yukihara, E. G. (2019). Observation of strong thermally transferred optically stimulated luminescence (TT-OSL) in BeO. Radiation Measurements, 121, 103-108. https://doi.org/10.1016/j.radmeas.2018.12.014 |
| Thermoluminescence analysis for particle temperature sensing and thermochronometry: principles and fundamental challenges
Yukihara, E. G., Coleman, A. C., Biswas, R. H., Lambert, R., Herman, F., & King, G. E. (2018). Thermoluminescence analysis for particle temperature sensing and thermochronometry: principles and fundamental challenges. Radiation Measurements, 120, 274-280. https://doi.org/10.1016/j.radmeas.2018.05.007 |
| BeO optically stimulated luminescence dosimetry using automated research readers
Yukihara, E. G., Andrade, A. B., & Eller, S. (2016). BeO optically stimulated luminescence dosimetry using automated research readers. Radiation Measurements, 94, 27-34. https://doi.org/10.1016/j.radmeas.2016.08.008 |
| Optically stimulated luminescence from Al<sub>2</sub>O<sub>3</sub>:C irradiated with 10-60 MeV protons
Edmund, J. M., Andersen, C. E., Greilich, S., Sawakuchi, G. O., Yukihara, E. G., Jain, M., … Mattsson, S. (2007). Optically stimulated luminescence from Al2O3:C irradiated with 10-60 MeV protons. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 580(1), 210-213. https://doi.org/10.1016/j.nima.2007.05.086 |