Active Filters

  • (-) Keywords = protein engineering
Search Results 1 - 20 of 40
Select Page
CYP154C5 regioselectivity in steroid hydroxylation explored by substrate modifications and protein engineering
Bracco, P., Wijma, H. J., Nicolai, B., Rodriguez Buitrago, J. A., Klünemann, T., Vila, A., … Schallmey, A. (2021). CYP154C5 regioselectivity in steroid hydroxylation explored by substrate modifications and protein engineering. ChemBioChem, 22(6), 1099-1110. https://doi.org/10.1002/cbic.202000735
Tight and specific lanthanide binding in a de novo TIM barrel with a large internal cavity designed by symmetric domain fusion
Caldwell, S. J., Haydon, I. C., Piperidou, N., Huang, P. S., Bick, M. J., Sjöström, H. S., … Zeymer, C. (2020). Tight and specific lanthanide binding in a de novo TIM barrel with a large internal cavity designed by symmetric domain fusion. Proceedings of the National Academy of Sciences of the United States of America PNAS, 117(48), 30362-30369. https://doi.org/10.1073/pnas.2008535117
Turning an asparaginyl endopeptidase into a peptide ligase
Hemu, X., El Sahili, A., Hu, S., Zhang, X., Serra, A., Goh, B. C., … Tam, J. P. (2020). Turning an asparaginyl endopeptidase into a peptide ligase. ACS Catalysis, 10(15), 8825-8834. https://doi.org/10.1021/acscatal.0c02078
Crystal structure of CC chemokine receptor 2A in complex with an orthosteric antagonist provides insights for the design of selective antagonists
Apel, A. K., Cheng, R. K. Y., Tautermann, C. S., Brauchle, M., Huang, C. Y., Pautsch, A., … Schnapp, G. (2019). Crystal structure of CC chemokine receptor 2A in complex with an orthosteric antagonist provides insights for the design of selective antagonists. Structure, 27(3), 427-438.e5. https://doi.org/10.1016/j.str.2018.10.027
Chemical optimization of whole-cell transfer hydrogenation using carbonic anhydrase as host protein
Rebelein, J. G., Cotelle, Y., Garabedian, B., & Ward, T. R. (2019). Chemical optimization of whole-cell transfer hydrogenation using carbonic anhydrase as host protein. ACS Catalysis, 9(5), 4173-4178. https://doi.org/10.1021/acscatal.9b01006
Curvature of designed armadillo repeat proteins allows modular peptide binding
Hansen, S., Ernst, P., König, S. L. B., Reichen, C., Ewald, C., Nettels, D., … Plückthun, A. (2018). Curvature of designed armadillo repeat proteins allows modular peptide binding. Journal of Structural Biology, 201(2), 108-117. https://doi.org/10.1016/j.jsb.2017.08.009
Structural basis for the selective inhibition of c-Jun N-terminal kinase 1 determined by rigid DARPin-DARPin fusions
Wu, Y., Honegger, A., Batyuk, A., Mittl, P. R. E., & Plückthun, A. (2018). Structural basis for the selective inhibition of c-Jun N-terminal kinase 1 determined by rigid DARPin-DARPin fusions. Journal of Molecular Biology, 430(14), 2128-2138. https://doi.org/10.1016/j.jmb.2017.10.032
Structures of designed armadillo repeat proteins binding to peptides fused to globular domains
Hansen, S., Kiefer, J. D., Madhurantakam, C., Mittl, P. R. E., & Plückthun, A. (2017). Structures of designed armadillo repeat proteins binding to peptides fused to globular domains. Protein Science, 26(10), 1942-1952. https://doi.org/10.1002/pro.3229
Selective Targeting of SH<sub>2</sub> Domain–Phosphotyrosine Interactions of Src Family Tyrosine Kinases with Monobodies
Kükenshöner, T., Schmit, N. E., Bouda, E., Sha, F., Pojer, F., Koide, A., … Hantschel, O. (2017). Selective Targeting of SH2 Domain–Phosphotyrosine Interactions of Src Family Tyrosine Kinases with Monobodies. Journal of Molecular Biology, 429(9), 1364-1380. https://doi.org/10.1016/j.jmb.2017.03.023
DARPin-based crystallization chaperones exploit molecular geometry as a screening dimension in protein crystallography
Batyuk, A., Wu, Y., Honegger, A., Heberling, M. M., & Plückthun, A. (2016). DARPin-based crystallization chaperones exploit molecular geometry as a screening dimension in protein crystallography. Journal of Molecular Biology, 428(8), 1574-1588. https://doi.org/10.1016/j.jmb.2016.03.002
Accelerating the association of the most stable protein–ligand complex by more than two orders of magnitude
Giese, C., Eras, J., Kern, A., Schärer, M. A., Capitani, G., & Glockshuber, R. (2016). Accelerating the association of the most stable protein–ligand complex by more than two orders of magnitude. Angewandte Chemie International Edition, 55(32), 9350-9355. https://doi.org/10.1002/anie.201603652
Engineering archeal surrogate systems for the development of protein-protein interaction inhibitors against human RAD51
Moschetti, T., Sharpe, T., Fischer, G., Marsh, M. E., Ng, H. K., Morgan, M., … Hyvönen, M. (2016). Engineering archeal surrogate systems for the development of protein-protein interaction inhibitors against human RAD51. Journal of Molecular Biology, 428(23), 4589-4607. https://doi.org/10.1016/j.jmb.2016.10.009
Structures of designed armadillo-repeat proteins show propagation of inter-repeat interface effects
Reichen, C., Madhurantakam, C., Hansen, S., Grutter, M. G., Pluckthun, A., & Mittl, P. R. E. (2016). Structures of designed armadillo-repeat proteins show propagation of inter-repeat interface effects. Acta Crystallographica Section D: Structural Biology, 72(1), 168-175. https://doi.org/10.1107/S2059798315023116
Generation of Fluorogen-Activating Designed Ankyrin Repeat Proteins (FADAs) as Versatile Sensor Tools
Schütz, M., Batyuk, A., Klenk, C., Kummer, L., De Picciotto, S., Gülbakan, B., … Plückthun, A. (2016). Generation of Fluorogen-Activating Designed Ankyrin Repeat Proteins (FADAs) as Versatile Sensor Tools. Journal of Molecular Biology, 428(6), 1272-1289. https://doi.org/10.1016/j.jmb.2016.01.017
MoFvAb: Modeling the Fv region of antibodies
Bujotzek, A., Fuchs, A., Qu, C., Benz, J. O., Klostermann, S., Antes, I., & Georges, G. (2015). MoFvAb: Modeling the Fv region of antibodies. mAbs, 7(5), 838-852. https://doi.org/10.1080/19420862.2015.1068492
Hapten-directed spontaneous disulfide shuffling: a universal technology for site-directed covalent coupling of payloads to antibodies
Dengl, S., Hoffmann, E., Grote, M., Wagner, C., Mundigl, O., Georges, G., … Brinkmann, U. (2015). Hapten-directed spontaneous disulfide shuffling: a universal technology for site-directed covalent coupling of payloads to antibodies. FASEB Journal, 29(5), 1763-1779. https://doi.org/10.1096/fj.14-263665
Structure-based enzyme tailoring of 5-hydroxymethylfurfural oxidase
Dijkman, W. P., Binda, C., Fraaije, M. W., & Mattevi, A. (2015). Structure-based enzyme tailoring of 5-hydroxymethylfurfural oxidase. ACS Catalysis, 5(3), 1833-1839. https://doi.org/10.1021/ACSCATAL.5B00031
Stabilization of G protein-coupled receptors by point mutations
Heydenreich, F. M., Vuckovic, Z., Matkovic, M., & Veprintsev, D. B. (2015). Stabilization of G protein-coupled receptors by point mutations. Frontiers in Pharmacology, 6(82) (15 pp.). https://doi.org/10.3389/fphar.2015.00082
A single point mutation enhances hydroxynitrile synthesis by halohydrin dehalogenase
Schallmey, M., Jekel, P., Tang, L., Majerić Elenkov, M., Höffken, H. W., Hauer, B., & Janssen, D. B. (2015). A single point mutation enhances hydroxynitrile synthesis by halohydrin dehalogenase. Enzyme and Microbial Technology, 70, 50-57. https://doi.org/10.1016/J.ENZMICTEC.2014.12.009
Boosting antibody developability through rational sequence optimization
Seeliger, D., Schulz, P., Litzenburger, T., Spitz, J., Hoerer, S., Blech, M., … Karow, A. R. (2015). Boosting antibody developability through rational sequence optimization. mAbs, 7(3), 505-515. https://doi.org/10.1080/19420862.2015.1017695