Active Filters

  • (-) Keywords = reactive transport modelling
Search Results 1 - 8 of 8
  • RSS Feed
Select Page
A multi-level pore scale reactive transport model for the investigation of combined leaching and carbonation of cement paste
Patel, R. A., Churakov, S. V., & Prasianakis, N. I. (2021). A multi-level pore scale reactive transport model for the investigation of combined leaching and carbonation of cement paste. Cement and Concrete Composites, 115, 103831 (18 pp.). https://doi.org/10.1016/j.cemconcomp.2020.103831
Reactive transport modelling of a low-pH concrete / clay interface
Idiart, A., Laviña, M., Kosakowski, G., Cochepin, B., Meeussen, J. C. L., Samper, J., … Nieves, A. (2020). Reactive transport modelling of a low-pH concrete / clay interface. Applied Geochemistry, 115, 104562 (16 pp.). https://doi.org/10.1016/j.apgeochem.2020.104562
An advanced reactive transport simulation scheme for hydrothermal systems modelling
Yapparova, A., Miron, G. D., Kulik, D. A., Kosakowski, G., & Driesner, T. (2019). An advanced reactive transport simulation scheme for hydrothermal systems modelling. Geothermics, 78, 138-153. https://doi.org/10.1016/j.geothermics.2018.12.003
A three-dimensional lattice Boltzmann method based reactive transport model to simulate changes in cement paste microstructure due to calcium leaching
Patel, R. A., Perko, J., Jacques, D., De Schutter, G., Ye, G., & Van Breugel, K. (2018). A three-dimensional lattice Boltzmann method based reactive transport model to simulate changes in cement paste microstructure due to calcium leaching. Construction and Building Materials, 166, 158-170. https://doi.org/10.1016/j.conbuildmat.2018.01.114
Interaction of ordinary Portland cement and Opalinus Clay: dual porosity modelling compared to experimental data
Jenni, A., Gimmi, T., Alt-Epping, P., Mäder, U., & Cloet, V. (2017). Interaction of ordinary Portland cement and Opalinus Clay: dual porosity modelling compared to experimental data. Physics and Chemistry of the Earth, 99, 22-37. https://doi.org/10.1016/j.pce.2017.01.004
Reactive transport modelling of dolomitisation using the new CSMP++GEM coupled code: governing equations, solution method and benchmarking results
Yapparova, A., Gabellone, T., Whitaker, F., Kulik, D. A., & Matthäi, S. K. (2017). Reactive transport modelling of dolomitisation using the new CSMP++GEM coupled code: governing equations, solution method and benchmarking results. Transport in Porous Media, 117(3), 385-413. https://doi.org/10.1007/s11242-017-0839-7
Reactive transport modelling of hydrothermal dolomitisation using the CSMP++GEM coupled code: effects of temperature and geological heterogeneity
Yapparova, A., Gabellone, T., Whitaker, F., Kulik, D. A., & Matthäi, S. K. (2017). Reactive transport modelling of hydrothermal dolomitisation using the CSMP++GEM coupled code: effects of temperature and geological heterogeneity. Chemical Geology, 466, 562-574. https://doi.org/10.1016/j.chemgeo.2017.07.005
Decalcification of cracked cement structures
Perko, J., Mayer, K. U., Kosakowski, G., De Windt, L., Govaerts, J., Jacques, D., … Meeussen, J. C. L. (2015). Decalcification of cracked cement structures. Computational Geosciences, 19(3), 673-693. https://doi.org/10.1007/s10596-014-9467-2