Active Filters

  • (-) Keywords = serial crystallography
Search Results 1 - 16 of 16
  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
<em>In situ</em> crystallography as an emerging method for structure solution of membrane proteins: the case of CCR2A
Cheng, R., Huang, C. Y., Hennig, M., Nar, H., & Schnapp, G. (2020). In situ crystallography as an emerging method for structure solution of membrane proteins: the case of CCR2A. FEBS Journal, 287(5), 866-873. https://doi.org/10.1111/febs.15098
In meso in situ serial X-Ray crystallography (IMISX): a protocol for membrane protein structure determination at the Swiss Light Source
Huang, C. Y., Olieric, V., Caffrey, M., & Wang, M. (2020). In meso in situ serial X-Ray crystallography (IMISX): a protocol for membrane protein structure determination at the Swiss Light Source. In C. Perez & T. Maier (Eds.), Methods in molecular biology: Vol. 2127. Expression, purification, and structural biology of membrane proteins. https://doi.org/10.1007/978-1-0716-0373-4_20
Fabrication of ultrathin suspended polymer membranes as supports for serial protein crystallography
Karpik, A., Martiel, I., Kristiansen, P. M., & Padeste, C. (2020). Fabrication of ultrathin suspended polymer membranes as supports for serial protein crystallography. Micro and Nano Engineering, 7, 100053 (6 pp.). https://doi.org/10.1016/j.mne.2020.100053
X-ray fluorescence detection for serial macromolecular crystallography using a JUNGFRAU pixel detector
Martiel, I., Mozzanica, A., Opara, N. L., Panepucci, E., Leonarski, F., Redford, S., … Wang, M. (2020). X-ray fluorescence detection for serial macromolecular crystallography using a JUNGFRAU pixel detector. Journal of Synchrotron Radiation, 27, 329-339. https://doi.org/10.1107/S1600577519016758
Crystal structure of CC chemokine receptor 2A in complex with an orthosteric antagonist provides insights for the design of selective antagonists
Apel, A. K., Cheng, R. K. Y., Tautermann, C. S., Brauchle, M., Huang, C. Y., Pautsch, A., … Schnapp, G. (2019). Crystal structure of CC chemokine receptor 2A in complex with an orthosteric antagonist provides insights for the design of selective antagonists. Structure, 27(3), 427-438.e5. https://doi.org/10.1016/j.str.2018.10.027
1 kHz fixed-target serial crystallography using a multilayer monochromator and an integrating pixel detector
Tolstikova, A., Levantino, M., Yefanov, O., Hennicke, V., Fischer, P., Meyer, J., … Meents, A. (2019). 1 kHz fixed-target serial crystallography using a multilayer monochromator and an integrating pixel detector. IUCrJ, 6(5), 927-937. https://doi.org/10.1107/S205225251900914X
A simple and versatile microfluidic device for efficient biomacromolecule crystallization and structural analysis by serial crystallography
de Wijn, R., Hennig, O., Roche, J., Engilberge, S., Rollet, K., Fernandez-Millan, P., … Sauter, C. (2019). A simple and versatile microfluidic device for efficient biomacromolecule crystallization and structural analysis by serial crystallography. IUCrJ, 6(3), 454-464. https://doi.org/10.1107/S2052252519003622
Resolution extension by image summing in serial femtosecond crystallography of two-dimensional membrane-protein crystals
Casadei, C. M., Tsai, C. J., Barty, A., Hunter, M. S., Zatsepin, N. A., Padeste, C., … Frank, M. (2018). Resolution extension by image summing in serial femtosecond crystallography of two-dimensional membrane-protein crystals. IUCrJ, 5(1), 103-117. https://doi.org/10.1107/S2052252517017043
Enzyme catalysis captured using multiple structures from one crystal at varying temperatures
Horrell, S., Kekilli, D., Sen, K., Owen, R. L., Dworkowski, F. S. N., Antonyuk, S. V., … Hough, M. A. (2018). Enzyme catalysis captured using multiple structures from one crystal at varying temperatures. IUCrJ, 5(3), 283-292. https://doi.org/10.1107/S205225251800386X
Serial crystallography at synchrotrons and X-ray lasers
Standfuss, J., & Spence, J. (2017). Serial crystallography at synchrotrons and X-ray lasers. IUCrJ, 4, 100-101. https://doi.org/10.1107/S2052252517001877
Identification of rogue datasets in serial crystallography
Assmann, G., Brehm, W., & Diederichs, K. (2016). Identification of rogue datasets in serial crystallography. Journal of Applied Crystallography, 49, 1021-1028. https://doi.org/10.1107/S1600576716005471
<em>In meso in situ</em> serial X-ray crystallography of soluble and membrane proteins at cryogenic temperatures
Huang, C. Y., Olieric, V., Ma, P., Howe, N., Vogeley, L., Liu, X., … Caffrey, M. (2016). In meso in situ serial X-ray crystallography of soluble and membrane proteins at cryogenic temperatures. Acta Crystallographica Section D: Structural Biology, 72(1), 93-112. https://doi.org/10.1107/S2059798315021683
Serial millisecond crystallography of membrane proteins
Jaeger, K., Dworkowski, F., Nogly, P., Milne, C., Wang, M., & Standfuss, J. (2016). Serial millisecond crystallography of membrane proteins. In I. Moraes (Ed.), Advances in experimental medicine and biology: Vol. 922. The next generation in membrane protein structure determination. https://doi.org/10.1007/978-3-319-35072-1_10
<em>In meso in situ</em> serial X-ray crystallography of soluble and membrane proteins
Huang, C. Y., Olieric, V., Ma, P., Panepucci, E., Diederichs, K., Wang, M., & Caffrey, M. (2015). In meso in situ serial X-ray crystallography of soluble and membrane proteins. Acta Crystallographica Section D: Structural Biology, 71(6), 1238-1256. https://doi.org/10.1107/S1399004715005210
Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser
Wu, W., Nogly, P., Rheinberger, J., Kick, L. M., Gati, C., Nelson, G., … Panneels, V. (2015). Batch crystallization of rhodopsin for structural dynamics using an X-ray free-electron laser. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 71, 856-860. https://doi.org/10.1107/S2053230X15009966
Breaking the indexing ambiguity in serial crystallography
Brehm, W., & Diederichs, K. (2014). Breaking the indexing ambiguity in serial crystallography. Acta Crystallographica Section D: Structural Biology, 70(1), 101-109. https://doi.org/10.1107/S1399004713025431