Active Filters

  • (-) Keywords = severe accidents
Search Results 1 - 19 of 19
  • RSS Feed
Select Page
The effects of activated cooler power on the transient pressure decay and helium mixing in the PANDA facility
Kapulla, R., Paranjape, S., Fehlmann, M., Suter, S., Doll, U., & Paladino, D. (2022). The effects of activated cooler power on the transient pressure decay and helium mixing in the PANDA facility. Nuclear Engineering and Technology, 54(6), 2311-2320. https://doi.org/10.1016/j.net.2021.12.032
Investigation of two-phase flow hydrodynamics under SGTR severe accident conditions
Betschart, T., Lind, T., & Prasser, H. M. (2020). Investigation of two-phase flow hydrodynamics under SGTR severe accident conditions. Nuclear Engineering and Design, 366, 110768 (14 pp.). https://doi.org/10.1016/j.nucengdes.2020.110768
Review of Fukushima Daiichi Nuclear Power Station debris endstate location in OECD/NEA preparatory study on analysis of fuel debris (PreADES) project
Nakayoshi, A., Rempe, J. L., Barrachin, M., Bottomley, D., Jacquemain, D., Journeau, C., … Song, J. H. (2020). Review of Fukushima Daiichi Nuclear Power Station debris endstate location in OECD/NEA preparatory study on analysis of fuel debris (PreADES) project. Nuclear Engineering and Design, 369, 110857 (15 pp.). https://doi.org/10.1016/j.nucengdes.2020.110857
Severe accident research priority ranking: a new assessment eight years after the Fukushima Daiichi accident
Manara, D., Jacquemain, D., Van Dorsselaere, J. P., Bottomley, P. D., Adorni, M., Journeau, C., … Dejardin, P. (2019). Severe accident research priority ranking: a new assessment eight years after the Fukushima Daiichi accident. In Proceedings of the ERMSAR 2019 (pp. 1-25). sine nomine.
Health effects of technologies for power generation: contributions from normal operation, severe accidents and terrorist threat
Hirschberg, S., Bauer, C., Burgherr, P., Cazzoli, E., Heck, T., Spada, M., & Treyer, K. (2016). Health effects of technologies for power generation: contributions from normal operation, severe accidents and terrorist threat. Reliability Engineering and System Safety, 145, 373-387. https://doi.org/10.1016/j.ress.2015.09.013
Erosion of a helium layer due to the flow resulting from the interaction of a steam jet with a flow obstruction in a large vessel
Paranjape, S., Kapulla, R., Mignot, G., & Paladino, D. (2016). Erosion of a helium layer due to the flow resulting from the interaction of a steam jet with a flow obstruction in a large vessel (p. N11A0514 (15 pp.). Presented at the 11th international topical meeting on nuclear reactor thermal hydraulics, operation and safety (NUTHOS-11). .
Health effects of technologies for power generation: contributions from normal operation, severe accidents and terrorist threat
Hirschberg, S., Bauer, C., Burgherr, P., Cazzoli, E., Heck, T., Spada, M., & Treyer, K. (2014). Health effects of technologies for power generation: contributions from normal operation, severe accidents and terrorist threat. In C. Lee Smith & T. Paulos (Eds.), Vol. 1. PSAM 12. Probabilistic safety assessment and management (pp. 176-187). CreateSpace Independent Publishing Platform.
Conclusions on severe accident research priorities
Klein-Heßling, W., Sonnenkalb, M., Jacquemain, D., Clément, B., Raimond, E., Dimmelmeier, H., … Lindholm, I. (2014). Conclusions on severe accident research priorities. Annals of Nuclear Energy, 74, 4-11. https://doi.org/10.1016/j.anucene.2014.07.015
Significance of Phébus-FP results for plant safety in Switzerland
Birchley, J., & Güntay, S. (2013). Significance of Phébus-FP results for plant safety in Switzerland. Annals of Nuclear Energy, 61, 206-214. https://doi.org/10.1016/j.anucene.2013.02.032
Analyses of the Phébus FPT3 experiment using the severe accident codes ATHLET-CD, ICARE/CATHARE, and MELCOR
Repetto, G., de Luze, O., Drath, T., Koch, M. K., Hollands, T., Trambauer, K., … Birchley, J. (2011). Analyses of the Phébus FPT3 experiment using the severe accident codes ATHLET-CD, ICARE/CATHARE, and MELCOR. Nuclear Technology, 176(3), 352-371. https://doi.org/10.13182/NT11-A13313
SARNET: severe accident research network of excellence
Albiol, T., Van Dorsselaere, J. P., Chaumont, B., Haste, T., Journeau, C., Meyer, L., … Zeyen, R. (2010). SARNET: severe accident research network of excellence. Progress in Nuclear Energy, 52(1), 2-10. https://doi.org/10.1016/j.pnucene.2009.07.011
Understanding the behaviour of absorber elements in silver-indium-cadmium control rods during PWR severe accident sequences
Dubourg, R., Austregesilo, H., Bals, C., Barrachin, M., Birchley, J., Haste, T., … Vimi, A. (2010). Understanding the behaviour of absorber elements in silver-indium-cadmium control rods during PWR severe accident sequences. Progress in Nuclear Energy, 52(1), 97-108. https://doi.org/10.1016/j.pnucene.2009.09.012
Recent advances in understanding ruthenium behaviour under air-ingress conditions during a PWR severe accident
Giordano, P., Auvinen, A., Brillant, G., Colombani, J., Davidovich, N., Dickson, R., … Vér, N. (2010). Recent advances in understanding ruthenium behaviour under air-ingress conditions during a PWR severe accident. Progress in Nuclear Energy, 52(1), 109-119. https://doi.org/10.1016/j.pnucene.2009.09.011
Progress in understanding key aerosol issues
Herranz, L. E., Ball, J., Auvinen, A., Bottomley, D., Dehbi, A., Housiadas, C., … Reeks, M. (2010). Progress in understanding key aerosol issues. Progress in Nuclear Energy, 52(1), 120-127. https://doi.org/10.1016/j.pnucene.2009.09.013
B<sub>4</sub>C oxidation modelling in severe accident codes: applications to PHEBUS and QUENCH experiments
Repetto, G., De Luze, O., Seiler, N., Trambauer, K., Austregesilo, H., Birchley, J., … Hollands, T. (2010). B4C oxidation modelling in severe accident codes: applications to PHEBUS and QUENCH experiments. Progress in Nuclear Energy, 52(1), 37-45. https://doi.org/10.1016/j.pnucene.2009.09.017
Ranking of severe accident research priorities
Schwinges, B., Journeau, C., Haste, T., Meyer, L., Tromm, W., & Trambauer, K. (2010). Ranking of severe accident research priorities. Progress in Nuclear Energy, 52(1), 11-18. https://doi.org/10.1016/j.pnucene.2009.09.006
High-temperature oxidation and quench behaviour of Zircaloy-4 and E110 cladding alloys
Steinbrück, M., Birchley, J., Boldyrev, A. V., Goryachev, A. V., Grosse, M., Haste, T. J., … Veshchunov, M. S. (2010). High-temperature oxidation and quench behaviour of Zircaloy-4 and E110 cladding alloys. Progress in Nuclear Energy, 52(1), 19-36. https://doi.org/10.1016/j.pnucene.2009.07.012
Assessment of severe accident risks in the Chinese coal chain
Burgherr, P., & Hirschberg, S. (2007). Assessment of severe accident risks in the Chinese coal chain. International Journal of Risk Assessment and Management, 7(8), 1157-1175. https://doi.org/10.1504/IJRAM.2007.015299
Experimental investigation of debris bed quenching with non-condensable gas release
Jasiulevičius, A., & Sehgal, B. R. (2006). Experimental investigation of debris bed quenching with non-condensable gas release. Energetika, 3(1), 1-8.