Active Filters

  • (-) Keywords = structural biology
Search Results 1 - 20 of 35
Select Page
Efficient production of a functional G protein-coupled receptor in <em>E. coli</em> for structural studies
Abiko, L. A., Rogowski, M., Gautier, A., Schertler, G., & Grzesiek, S. (2021). Efficient production of a functional G protein-coupled receptor in E. coli for structural studies. Journal of Biomolecular NMR, 75(1), 25-38. https://doi.org/10.1007/s10858-020-00354-6
Structural insights into protein folding, stability and activity using <em>in vivo</em> perdeuteration of hen egg-white lysozyme
Ramos, J., Laux, V., Haertlein, M., Boeri Erba, E., McAuley, K. E., Forsyth, V. T., … Langkilde, A. E. (2021). Structural insights into protein folding, stability and activity using in vivo perdeuteration of hen egg-white lysozyme. IUCrJ, 8, 372-386. https://doi.org/10.1107/S2052252521001299
Gold standard for macromolecular crystallography diffraction data
Bernstein, H. J., Förster, A., Bhowmick, A., Brewster, A. S., Brockhauser, S., Gelisio, L., … Winter, G. (2020). Gold standard for macromolecular crystallography diffraction data. IUCrJ, 7(5), 784-792. https://doi.org/10.1107/S2052252520008672
L-thyroxin and the non-classical thyroid hormone TETRAC are potent activators of PPARγ
Gellrich, L., Heitel, P., Heering, J., Kilu, W., Pollinger, J., Goebel, T., … Merk, D. (2020). L-thyroxin and the non-classical thyroid hormone TETRAC are potent activators of PPARγ. Journal of Medicinal Chemistry, 63(13), 6727-6740. https://doi.org/10.1021/acs.jmedchem.9b02150
X-ray crystal structure localizes the mechanism of inhibition of an IL-36R antagonist monoclonal antibody to interaction with Ig1 and Ig2 extra cellular domains
Larson, E. T., Brennan, D. L., Hickey, E. R., Ganesan, R., Kroe‐Barrett, R., & Farrow, N. A. (2020). X-ray crystal structure localizes the mechanism of inhibition of an IL-36R antagonist monoclonal antibody to interaction with Ig1 and Ig2 extra cellular domains. Protein Science, 29(7), 1679-1686. https://doi.org/10.1002/pro.3862
Serial femtosecond <em>zero dose</em> crystallography captures a water-free distal heme site in a dye‐decolourising peroxidase to reveal a catalytic role for an arginine in Fe<sup>IV</sup>=O formation
Lučić, M., Svistunenko, D. A., Wilson, M. T., Chaplin, A. K., Davy, B., Ebrahim, A., … Worrall, J. A. R. (2020). Serial femtosecond zero dose crystallography captures a water-free distal heme site in a dye‐decolourising peroxidase to reveal a catalytic role for an arginine in FeIV=O formation. Angewandte Chemie International Edition, 59(48), 21656-21662. https://doi.org/10.1002/anie.202008622
Low-dose &lt;em&gt;in situ&lt;/em&gt; prelocation of protein microcrystals by 2D X-ray phase-contrast imaging for serial crystallography
Martiel, I., Huang, C. Y., Villanueva-Perez, P., Panepucci, E., Basu, S., Caffrey, M., … Wang, M. (2020). Low-dose in situ prelocation of protein microcrystals by 2D X-ray phase-contrast imaging for serial crystallography. IUCrJ, 7(6), 1131-1141. https://doi.org/10.1107/S2052252520013238
Complex crystal structures of EGFR with third-generation kinase inhibitors and simultaneously bound allosteric ligands
Niggenaber, J., Heyden, L., Grabe, T., Muller, M. P., Lategahn, J., & Rauh, D. (2020). Complex crystal structures of EGFR with third-generation kinase inhibitors and simultaneously bound allosteric ligands. ACS Medicinal Chemistry Letters, 11(12), 2484-2490. https://doi.org/10.1021/acsmedchemlett.0c00472
Sub-pixel electron detection using a convolutional neural network
van Schayck, J. P., van Genderen, E., Maddox, E., Roussel, L., Boulanger, H., Fröjdh, E., … Ravelli, R. B. G. (2020). Sub-pixel electron detection using a convolutional neural network. Ultramicroscopy, 218, 113091 (10 pp.). https://doi.org/10.1016/j.ultramic.2020.113091
Drug design inspired by nature: crystallographic detection of an auto-tailored protease inhibitor template
Gall, F. M., Hohl, D., Frasson, D., Wermelinger, T., Mittl, P. R. E., Sievers, M., & Riedl, R. (2019). Drug design inspired by nature: crystallographic detection of an auto-tailored protease inhibitor template. Angewandte Chemie International Edition, 58(12), 4051-4055. https://doi.org/10.1002/anie.201812348
Structural and mechanistic features of ClyA-like α-pore-forming toxins
Bräuning, B., & Groll, M. (2018). Structural and mechanistic features of ClyA-like α-pore-forming toxins. Toxins, 10(9), 343 (9 pp.). https://doi.org/10.3390/toxins10090343
Ligand channel in pharmacologically stabilized rhodopsin
Mattle, D., Kuhn, B., Aebi, J., Bedoucha, M., Kekilli, D., Grozinger, N., … Dawson, R. J. P. (2018). Ligand channel in pharmacologically stabilized rhodopsin. Proceedings of the National Academy of Sciences of the United States of America PNAS, 115(14), 3640-3645. https://doi.org/10.1073/pnas.1718084115
AibA/AibB Induces an Intramolecular Decarboxylation in Isovalerate Biosynthesis by Myxococcus xanthus
Bock, T., Luxenburger, E., Hoffmann, J., Schütza, V., Feiler, C., Müller, R., & Blankenfeldt, W. (2017). AibA/AibB Induces an Intramolecular Decarboxylation in Isovalerate Biosynthesis by Myxococcus xanthus. Angewandte Chemie International Edition, 56(33), 9986-9989. https://doi.org/10.1002/anie.201701992
Atomic structure of granulin determined from native nanocrystalline granulovirus using an X-ray free-electron laser
Gati, C., Oberthuer, D., Yefanov, O., Bunker, R. D., Stellato, F., Chiu, E., … Chapman, H. N. (2017). Atomic structure of granulin determined from native nanocrystalline granulovirus using an X-ray free-electron laser. Proceedings of the National Academy of Sciences of the United States of America PNAS, 114(9), 2247-2252. https://doi.org/10.1073/pnas.1609243114
Structures of the N-Terminal Domain of PqsA in Complex with Anthraniloyl- and 6-Fluoroanthraniloyl-AMP: Substrate Activation in Pseudomonas Quinolone Signal (PQS) Biosynthesis
Witzgall, F., Ewert, W., & Blankenfeldt, W. (2017). Structures of the N-Terminal Domain of PqsA in Complex with Anthraniloyl- and 6-Fluoroanthraniloyl-AMP: Substrate Activation in Pseudomonas Quinolone Signal (PQS) Biosynthesis. ChemBioChem, 18(20), 2045-2055. https://doi.org/10.1002/cbic.201700374
The Structure of LiuC, a 3-Hydroxy-3-Methylglutaconyl CoA Dehydratase Involved in Isovaleryl-CoA Biosynthesis in Myxococcus xanthus, Reveals Insights into Specificity and Catalysis
Bock, T., Reichelt, J., Müller, R., & Blankenfeldt, W. (2016). The Structure of LiuC, a 3-Hydroxy-3-Methylglutaconyl CoA Dehydratase Involved in Isovaleryl-CoA Biosynthesis in Myxococcus xanthus, Reveals Insights into Specificity and Catalysis. ChemBioChem, 17, 1658-1664. https://doi.org/10.1002/cbic.201600225
Structural assembly of the signaling competent ERK2-RSK1 heterodimeric protein kinase complex
Alexa, A., Gógl, G., Glatz, G., Garai, Á., Zeke, A., Varga, J., … Reményi, A. (2015). Structural assembly of the signaling competent ERK2-RSK1 heterodimeric protein kinase complex. Proceedings of the National Academy of Sciences of the United States of America PNAS, 112(9), 2711-2716. https://doi.org/10.1073/pnas.1417571112
Structure of Ctk3, a subunit of the RNA polymerase II CTD kinase complex, reveals a noncanonical CTD-interacting domain fold
Mühlbacher, W., Mayer, A., Sun, M., Remmert, M., Cheung, A. C. M., Niesser, J., … Cramer, P. (2015). Structure of Ctk3, a subunit of the RNA polymerase II CTD kinase complex, reveals a noncanonical CTD-interacting domain fold. Proteins, 83(10), 1849-1858. https://doi.org/10.1002/prot.24869
Unique crystal structure of a novel surfactant protein from the foam nest of the frog leptodactylus vastus
Cavalcante Hissa, D., Arruda Bezerra, G., Birner-Gruenberger, R., Paulino Silva, L., Usõn, I., Gruber, K., & MacIel Melo, V. M. (2014). Unique crystal structure of a novel surfactant protein from the foam nest of the frog leptodactylus vastus. ChemBioChem, 15(3), 393-398. https://doi.org/10.1002/cbic.201300726
Relevance of rhodopsin studies for GPCR activation
Deupi, X. (2014). Relevance of rhodopsin studies for GPCR activation. Biochimica et Biophysica Acta: Bioenergetics, 1837(5), 674-682. https://doi.org/10.1016/j.bbabio.2013.09.002